ruvector-core 0.1.21

High-performance Rust vector database core with HNSW indexing
Documentation

Ruvector Core

Crates.io Documentation License: MIT Rust

High-performance Rust vector database engine with HNSW indexing, quantization, and SIMD optimizations.

ruvector-core is the foundational Rust library powering Ruvectorโ€”a next-generation vector database built for extreme performance and universal deployment. This crate provides the core vector database engine with state-of-the-art algorithms optimized for modern hardware.

๐ŸŒŸ Why Ruvector Core?

  • โšก Blazing Fast: <0.5ms p50 query latency with HNSW indexing
  • ๐Ÿง  Memory Efficient: 4-32x compression via quantization techniques
  • ๐ŸŽฏ High Accuracy: 95%+ recall with HNSW + Product Quantization
  • ๐Ÿš€ SIMD Accelerated: Hardware-optimized distance calculations using SimSIMD
  • ๐Ÿ”ง Zero Dependencies: Minimal external dependencies, pure Rust implementation
  • ๐Ÿ“ฆ Production Ready: Battle-tested algorithms with comprehensive benchmarks

๐Ÿš€ Features

Core Capabilities

  • HNSW Indexing: Hierarchical Navigable Small World graphs for O(log n) approximate nearest neighbor search
  • Multiple Distance Metrics: Euclidean, Cosine, Dot Product, Manhattan
  • Advanced Quantization: Scalar (4x), Product (8-32x), and Binary (32x) quantization
  • SIMD Optimizations: Hardware-accelerated distance calculations via simsimd
  • Zero-Copy I/O: Memory-mapped storage for instant loading
  • Concurrent Operations: Lock-free data structures and parallel batch processing
  • Flexible Storage: Persistent storage with redb and memory-mapped files

Advanced Features

  • Hybrid Search: Combine dense vector search with sparse BM25 text search
  • Filtered Search: Apply metadata filters during vector search
  • MMR Diversification: Maximal Marginal Relevance for diverse result sets
  • Conformal Prediction: Uncertainty quantification for search results
  • Product Quantization: Memory-efficient vector compression with high accuracy
  • Cache Optimization: Multi-level caching for improved performance
  • Lock-Free Indexing: High-concurrency operations without blocking

๐Ÿ“ฆ Installation

Add ruvector-core to your Cargo.toml:

[dependencies]
ruvector-core = "0.1.0"

Feature Flags

[dependencies]
ruvector-core = { version = "0.1.0", features = ["simd", "uuid-support"] }

Available features:

  • simd (default): Enable SIMD-optimized distance calculations
  • uuid-support (default): Enable UUID generation for vector IDs

โšก Quick Start

Basic Usage

use ruvector_core::{VectorDB, DbOptions, VectorEntry, SearchQuery, DistanceMetric};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a new vector database
    let mut options = DbOptions::default();
    options.dimensions = 384;  // Vector dimensions
    options.storage_path = "./my_vectors.db".to_string();
    options.distance_metric = DistanceMetric::Cosine;

    let db = VectorDB::new(options)?;

    // Insert vectors
    db.insert(VectorEntry {
        id: Some("doc1".to_string()),
        vector: vec![0.1, 0.2, 0.3, /* ... 384 dimensions */],
        metadata: None,
    })?;

    db.insert(VectorEntry {
        id: Some("doc2".to_string()),
        vector: vec![0.4, 0.5, 0.6, /* ... 384 dimensions */],
        metadata: None,
    })?;

    // Search for similar vectors
    let results = db.search(SearchQuery {
        vector: vec![0.1, 0.2, 0.3, /* ... 384 dimensions */],
        k: 10,  // Return top 10 results
        filter: None,
        ef_search: None,
    })?;

    for result in results {
        println!("ID: {}, Score: {}", result.id, result.score);
    }

    Ok(())
}

Batch Operations

use ruvector_core::{VectorDB, VectorEntry};

// Insert multiple vectors efficiently
let entries = vec![
    VectorEntry {
        id: Some("doc1".to_string()),
        vector: vec![0.1, 0.2, 0.3],
        metadata: None,
    },
    VectorEntry {
        id: Some("doc2".to_string()),
        vector: vec![0.4, 0.5, 0.6],
        metadata: None,
    },
];

let ids = db.insert_batch(entries)?;
println!("Inserted {} vectors", ids.len());

With Metadata Filtering

use std::collections::HashMap;
use serde_json::json;

// Insert with metadata
db.insert(VectorEntry {
    id: Some("product1".to_string()),
    vector: vec![0.1, 0.2, 0.3],
    metadata: Some(HashMap::from([
        ("category".to_string(), json!("electronics")),
        ("price".to_string(), json!(299.99)),
    ])),
})?;

// Search with metadata filter
let results = db.search(SearchQuery {
    vector: vec![0.1, 0.2, 0.3],
    k: 10,
    filter: Some(HashMap::from([
        ("category".to_string(), json!("electronics")),
    ])),
    ef_search: None,
})?;

HNSW Configuration

use ruvector_core::{DbOptions, HnswConfig, DistanceMetric};

let mut options = DbOptions::default();
options.dimensions = 384;
options.distance_metric = DistanceMetric::Cosine;

// Configure HNSW index parameters
options.hnsw_config = Some(HnswConfig {
    m: 32,                    // Connections per layer (16-64 typical)
    ef_construction: 200,     // Build-time accuracy (100-500 typical)
    ef_search: 100,          // Search-time accuracy (50-200 typical)
    max_elements: 10_000_000, // Maximum vectors
});

let db = VectorDB::new(options)?;

Quantization

use ruvector_core::{DbOptions, QuantizationConfig};

let mut options = DbOptions::default();
options.dimensions = 384;

// Enable scalar quantization (4x compression)
options.quantization = Some(QuantizationConfig::Scalar);

// Or product quantization (8-32x compression)
options.quantization = Some(QuantizationConfig::Product {
    subspaces: 8,  // Number of subspaces
    k: 256,        // Codebook size
});

let db = VectorDB::new(options)?;

๐Ÿ“Š API Overview

Core Types

// Main database interface
pub struct VectorDB { /* ... */ }

// Vector entry with optional ID and metadata
pub struct VectorEntry {
    pub id: Option<VectorId>,
    pub vector: Vec<f32>,
    pub metadata: Option<HashMap<String, serde_json::Value>>,
}

// Search query parameters
pub struct SearchQuery {
    pub vector: Vec<f32>,
    pub k: usize,
    pub filter: Option<HashMap<String, serde_json::Value>>,
    pub ef_search: Option<usize>,
}

// Search result with score
pub struct SearchResult {
    pub id: VectorId,
    pub score: f32,
    pub vector: Option<Vec<f32>>,
    pub metadata: Option<HashMap<String, serde_json::Value>>,
}

Main Operations

impl VectorDB {
    // Create new database with options
    pub fn new(options: DbOptions) -> Result<Self>;

    // Create with just dimensions (uses defaults)
    pub fn with_dimensions(dimensions: usize) -> Result<Self>;

    // Insert single vector
    pub fn insert(&self, entry: VectorEntry) -> Result<VectorId>;

    // Insert multiple vectors
    pub fn insert_batch(&self, entries: Vec<VectorEntry>) -> Result<Vec<VectorId>>;

    // Search for similar vectors
    pub fn search(&self, query: SearchQuery) -> Result<Vec<SearchResult>>;

    // Delete vector by ID
    pub fn delete(&self, id: &str) -> Result<bool>;

    // Get vector by ID
    pub fn get(&self, id: &str) -> Result<Option<VectorEntry>>;

    // Get total count
    pub fn len(&self) -> Result<usize>;

    // Check if empty
    pub fn is_empty(&self) -> Result<bool>;
}

Distance Metrics

pub enum DistanceMetric {
    Euclidean,   // L2 distance - default for embeddings
    Cosine,      // Cosine similarity (1 - similarity)
    DotProduct,  // Negative dot product (for maximization)
    Manhattan,   // L1 distance
}

Advanced Features

// Hybrid search (dense + sparse)
use ruvector_core::{HybridSearch, HybridConfig};

let hybrid = HybridSearch::new(HybridConfig {
    alpha: 0.7,  // Balance between dense (0.7) and sparse (0.3)
    ..Default::default()
});

// Filtered search with expressions
use ruvector_core::{FilteredSearch, FilterExpression};

let filtered = FilteredSearch::new(db);
let expr = FilterExpression::And(vec![
    FilterExpression::Equals("category".to_string(), json!("books")),
    FilterExpression::GreaterThan("price".to_string(), json!(10.0)),
]);

// MMR diversification
use ruvector_core::{MMRSearch, MMRConfig};

let mmr = MMRSearch::new(MMRConfig {
    lambda: 0.5,  // Balance relevance (0.5) and diversity (0.5)
    ..Default::default()
});

๐ŸŽฏ Performance Characteristics

Latency (Single Query)

Operation           Flat Index    HNSW Index
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
Search (1K vecs)    ~0.1ms       ~0.2ms
Search (100K vecs)  ~10ms        ~0.5ms
Search (1M vecs)    ~100ms       <1ms
Insert              ~0.1ms       ~1ms
Batch (1000)        ~50ms        ~500ms

Memory Usage (1M Vectors, 384 Dimensions)

Configuration              Memory      Recall
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
Full Precision (f32)       ~1.5GB      100%
Scalar Quantization        ~400MB      98%
Product Quantization       ~200MB      95%
Binary Quantization        ~50MB       85%

Throughput (Queries Per Second)

Configuration              QPS         Latency (p50)
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
Single Thread             ~2,000      ~0.5ms
Multi-Thread (8 cores)    ~50,000     <0.5ms
With SIMD                 ~80,000     <0.3ms
With Quantization         ~100,000    <0.2ms

๐Ÿ”ง Configuration Guide

For Maximum Accuracy

let options = DbOptions {
    dimensions: 384,
    distance_metric: DistanceMetric::Cosine,
    hnsw_config: Some(HnswConfig {
        m: 64,
        ef_construction: 500,
        ef_search: 200,
        max_elements: 10_000_000,
    }),
    quantization: None,  // Full precision
    ..Default::default()
};

For Maximum Speed

let options = DbOptions {
    dimensions: 384,
    distance_metric: DistanceMetric::DotProduct,
    hnsw_config: Some(HnswConfig {
        m: 16,
        ef_construction: 100,
        ef_search: 50,
        max_elements: 10_000_000,
    }),
    quantization: Some(QuantizationConfig::Binary),
    ..Default::default()
};

For Balanced Performance

let options = DbOptions::default(); // Recommended defaults

๐Ÿ”จ Building and Testing

Build

# Build with default features
cargo build --release

# Build without SIMD
cargo build --release --no-default-features --features uuid-support

# Build for specific target with optimizations
RUSTFLAGS="-C target-cpu=native" cargo build --release

Testing

# Run all tests
cargo test

# Run with specific features
cargo test --features simd

# Run with logging
RUST_LOG=debug cargo test

Benchmarks

# Run all benchmarks
cargo bench

# Run specific benchmark
cargo bench --bench hnsw_search

# Run with features
cargo bench --features simd

Available benchmarks:

  • distance_metrics - SIMD-optimized distance calculations
  • hnsw_search - HNSW index search performance
  • quantization_bench - Quantization techniques
  • batch_operations - Batch insert/search operations
  • comprehensive_bench - Full system benchmarks

๐Ÿ“š Documentation

Complete Ruvector Documentation

This crate is part of the larger Ruvector project:

API Documentation

Generate and view the full API documentation:

cargo doc --open --no-deps

๐ŸŒ Related Crates

ruvector-core is the foundation for platform-specific bindings:

๐Ÿค Contributing

We welcome contributions! See the main Contributing Guidelines for details.

Areas for Contribution

  • ๐Ÿ› Bug fixes and stability improvements
  • โœจ New distance metrics or quantization techniques
  • ๐Ÿ“ˆ Performance optimizations
  • ๐Ÿงช Additional test coverage
  • ๐Ÿ“ Documentation and examples

๐Ÿ“Š Comparison

Why Ruvector Core vs. Alternatives?

Feature Ruvector Core hnswlib-rs faiss-rs qdrant
Pure Rust โœ… โœ… โŒ (C++) โœ…
SIMD โœ… SimSIMD โŒ โœ… โœ…
Quantization โœ… Multiple โŒ โœ… โœ…
Zero-Copy I/O โœ… โŒ โœ… โœ…
Metadata Filter โœ… โŒ โŒ โœ…
Hybrid Search โœ… โŒ โŒ โœ…
P50 Latency <0.5ms ~1ms ~0.5ms ~1ms
Dependencies Minimal Minimal Heavy Heavy

๐Ÿ“œ License

MIT License - see LICENSE for details.

๐Ÿ™ Acknowledgments

Built with state-of-the-art algorithms and libraries:


Part of Ruvector โ€ข Built by rUv

Star on GitHub Follow @ruvnet

Documentation โ€ข Crates.io โ€ข GitHub