1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
use std::rc::Rc;

use integer_encoding::FixedInt;

/// Encapsulates a filter algorithm allowing to search for keys more efficiently.
/// Usually, policies are used as a BoxedFilterPolicy (see below), so they
/// can be easily cloned and nested.
pub trait FilterPolicy {
    /// Returns a string identifying this policy.
    fn name(&self) -> &'static str;
    /// Create a filter matching the given keys. Keys are given as a long byte array that is
    /// indexed by the offsets contained in key_offsets.
    fn create_filter(&self, keys: &[u8], key_offsets: &[usize]) -> Vec<u8>;
    /// Check whether the given key may match the filter.
    fn key_may_match(&self, key: &[u8], filter: &[u8]) -> bool;
}

/// A boxed and refcounted filter policy (reference-counted because a Box with unsized content
/// couldn't be cloned otherwise)
pub type BoxedFilterPolicy = Rc<Box<dyn FilterPolicy>>;

impl FilterPolicy for BoxedFilterPolicy {
    fn name(&self) -> &'static str {
        (**self).name()
    }
    fn create_filter(&self, keys: &[u8], key_offsets: &[usize]) -> Vec<u8> {
        (**self).create_filter(keys, key_offsets)
    }
    fn key_may_match(&self, key: &[u8], filter: &[u8]) -> bool {
        (**self).key_may_match(key, filter)
    }
}

/// Used for tables that don't have filter blocks but need a type parameter.
#[derive(Clone)]
pub struct NoFilterPolicy;

impl NoFilterPolicy {
    pub fn new() -> NoFilterPolicy {
        NoFilterPolicy
    }
}

impl FilterPolicy for NoFilterPolicy {
    fn name(&self) -> &'static str {
        "_"
    }
    fn create_filter(&self, _: &[u8], _: &[usize]) -> Vec<u8> {
        vec![]
    }
    fn key_may_match(&self, _: &[u8], _: &[u8]) -> bool {
        true
    }
}

const BLOOM_SEED: u32 = 0xbc9f1d34;

/// A filter policy using a bloom filter internally.
#[derive(Clone)]
pub struct BloomPolicy {
    bits_per_key: u32,
    k: u32,
}

/// Beware the magic numbers...
impl BloomPolicy {
    /// Returns a new boxed BloomPolicy.
    pub fn new(bits_per_key: u32) -> BloomPolicy {
        BloomPolicy::new_unwrapped(bits_per_key)
    }

    /// Returns a new BloomPolicy with the given parameter.
    fn new_unwrapped(bits_per_key: u32) -> BloomPolicy {
        let mut k = (bits_per_key as f32 * 0.69) as u32;

        if k < 1 {
            k = 1;
        } else if k > 30 {
            k = 30;
        }

        BloomPolicy { bits_per_key, k }
    }

    fn bloom_hash(&self, data: &[u8]) -> u32 {
        let m: u32 = 0xc6a4a793;
        let r: u32 = 24;

        let mut ix = 0;
        let limit = data.len();

        let mut h: u32 = BLOOM_SEED ^ (limit as u64 * m as u64) as u32;

        while ix + 4 <= limit {
            let w = u32::decode_fixed(&data[ix..ix + 4]);
            ix += 4;

            h = (h as u64 + w as u64) as u32;
            h = (h as u64 * m as u64) as u32;
            h ^= h >> 16;
        }

        // Process left-over bytes
        assert!(limit - ix < 4);

        if limit - ix > 0 {
            let mut i = 0;

            for b in data[ix..].iter() {
                h = h.overflowing_add((*b as u32) << (8 * i)).0;
                i += 1;
            }

            h = (h as u64 * m as u64) as u32;
            h ^= h >> r;
        }
        h
    }
}

impl FilterPolicy for BloomPolicy {
    fn name(&self) -> &'static str {
        "leveldb.BuiltinBloomFilter2"
    }
    fn create_filter(&self, keys: &[u8], key_offsets: &[usize]) -> Vec<u8> {
        let filter_bits = key_offsets.len() * self.bits_per_key as usize;
        let mut filter: Vec<u8>;

        if filter_bits < 64 {
            filter = Vec::with_capacity(8 + 1);
            filter.resize(8, 0);
        } else {
            filter = Vec::with_capacity(1 + ((filter_bits + 7) / 8));
            filter.resize((filter_bits + 7) / 8, 0);
        }

        let adj_filter_bits = (filter.len() * 8) as u32;

        // Encode k at the end of the filter.
        filter.push(self.k as u8);

        // Add all keys to the filter.
        offset_data_iterate(keys, key_offsets, |key| {
            let mut h = self.bloom_hash(key);
            let delta = (h >> 17) | (h << 15);
            for _ in 0..self.k {
                let bitpos = (h % adj_filter_bits) as usize;
                filter[bitpos / 8] |= 1 << (bitpos % 8);
                h = (h as u64 + delta as u64) as u32;
            }
        });

        filter
    }
    fn key_may_match(&self, key: &[u8], filter: &[u8]) -> bool {
        if filter.is_empty() {
            return true;
        }

        let bits = (filter.len() - 1) as u32 * 8;
        let k = filter[filter.len() - 1];
        let filter_adj = &filter[0..filter.len() - 1];

        if k > 30 {
            return true;
        }

        let mut h = self.bloom_hash(key);
        let delta = (h >> 17) | (h << 15);
        for _ in 0..k {
            let bitpos = (h % bits) as usize;
            if (filter_adj[bitpos / 8] & (1 << (bitpos % 8))) == 0 {
                return false;
            }
            h = (h as u64 + delta as u64) as u32;
        }
        true
    }
}

/// A filter policy wrapping another policy; extracting the user key from internal keys for all
/// operations.
/// A User Key is u8*.
/// An Internal Key is u8* u8{8} (where the second part encodes a tag and a sequence number).
#[derive(Clone)]
pub struct InternalFilterPolicy<FP: FilterPolicy> {
    internal: FP,
}

impl<FP: FilterPolicy> InternalFilterPolicy<FP> {
    pub fn new(inner: FP) -> InternalFilterPolicy<FP> {
        InternalFilterPolicy { internal: inner }
    }
}

impl<FP: FilterPolicy> FilterPolicy for InternalFilterPolicy<FP> {
    fn name(&self) -> &'static str {
        self.internal.name()
    }

    fn create_filter(&self, keys: &[u8], key_offsets: &[usize]) -> Vec<u8> {
        let mut mod_keys = Vec::with_capacity(keys.len() - key_offsets.len() * 8);
        let mut mod_key_offsets = Vec::with_capacity(key_offsets.len());

        offset_data_iterate(keys, key_offsets, |key| {
            mod_key_offsets.push(mod_keys.len());
            mod_keys.extend_from_slice(&key[0..key.len() - 8]);
        });
        self.internal.create_filter(&mod_keys, &mod_key_offsets)
    }

    fn key_may_match(&self, key: &[u8], filter: &[u8]) -> bool {
        self.internal.key_may_match(&key[0..key.len() - 8], filter)
    }
}

/// offset_data_iterate iterates over the entries in data that are indexed by the offsets given in
/// offsets. This is e.g. the internal format of a FilterBlock.
fn offset_data_iterate<F: FnMut(&[u8])>(data: &[u8], offsets: &[usize], mut f: F) {
    for offix in 0..offsets.len() {
        let upper = if offix == offsets.len() - 1 {
            data.len()
        } else {
            offsets[offix + 1]
        };
        let piece = &data[offsets[offix]..upper];
        f(piece);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::key_types::LookupKey;

    const _BITS_PER_KEY: u32 = 12;

    fn input_data() -> (Vec<u8>, Vec<usize>) {
        let mut concat = vec![];
        let mut offs = vec![];

        for d in [
            "abc123def456".as_bytes(),
            "xxx111xxx222".as_bytes(),
            "ab00cd00ab".as_bytes(),
            "908070605040302010".as_bytes(),
        ]
        .iter()
        {
            offs.push(concat.len());
            concat.extend_from_slice(d);
        }
        (concat, offs)
    }

    /// Creates a filter using the keys from input_data().
    fn create_filter() -> Vec<u8> {
        let fpol = BloomPolicy::new(_BITS_PER_KEY);
        let (data, offs) = input_data();
        let filter = fpol.create_filter(&data, &offs);

        assert_eq!(filter, vec![194, 148, 129, 140, 192, 196, 132, 164, 8]);
        filter
    }

    /// Creates a filter using the keys from input_data() but converted to InternalKey format.
    fn create_internalkey_filter() -> Vec<u8> {
        let fpol = Rc::new(Box::new(InternalFilterPolicy::new(BloomPolicy::new(
            _BITS_PER_KEY,
        ))));
        let (data, offs) = input_data();
        let (mut intdata, mut intoffs) = (vec![], vec![]);

        offset_data_iterate(&data, &offs, |key| {
            let ikey = LookupKey::new(key, 123);
            intoffs.push(intdata.len());
            intdata.extend_from_slice(ikey.internal_key());
        });
        let filter = fpol.create_filter(&intdata, &intoffs);

        filter
    }

    #[test]
    fn test_filter_bloom() {
        let f = create_filter();
        let fp = BloomPolicy::new(_BITS_PER_KEY);
        let (data, offs) = input_data();

        offset_data_iterate(&data, &offs, |key| {
            assert!(fp.key_may_match(key, &f));
        });
    }

    /// This test verifies that InternalFilterPolicy works correctly.
    #[test]
    fn test_filter_internal_keys_identical() {
        assert_eq!(create_filter(), create_internalkey_filter());
    }

    #[test]
    fn test_filter_bloom_hash() {
        let d1 = vec![0x62];
        let d2 = vec![0xc3, 0x97];
        let d3 = vec![0xe2, 0x99, 0xa5];
        let d4 = vec![0xe1, 0x80, 0xb9, 0x32];

        let fp = BloomPolicy::new_unwrapped(_BITS_PER_KEY);

        assert_eq!(fp.bloom_hash(&d1), 0xef1345c4);
        assert_eq!(fp.bloom_hash(&d2), 0x5b663814);
        assert_eq!(fp.bloom_hash(&d3), 0x323c078f);
        assert_eq!(fp.bloom_hash(&d4), 0xed21633a);
    }
}