1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.

use std::collections::VecDeque;
use std::hash::Hash;
use std::sync::RwLock;

use hashbrown::HashMap;
use petgraph::algo::dijkstra;
use petgraph::visit::{
    EdgeCount,
    EdgeIndexable,
    EdgeRef,
    GraphBase,
    GraphProp, // allows is_directed
    IntoEdges,
    IntoEdgesDirected,
    IntoNeighbors,
    IntoNeighborsDirected,
    IntoNodeIdentifiers,
    NodeCount,
    NodeIndexable,
    Reversed,
    Visitable,
};
use rayon_cond::CondIterator;

/// Compute the betweenness centrality of all nodes in a graph.
///
/// The algorithm used in this function is based on:
///
/// Ulrik Brandes, A Faster Algorithm for Betweenness Centrality.
/// Journal of Mathematical Sociology 25(2):163-177, 2001.
///
/// This function is multithreaded and will run in parallel if the number
/// of nodes in the graph is above the value of ``parallel_threshold``. If the
/// function will be running in parallel the env var ``RAYON_NUM_THREADS`` can
/// be used to adjust how many threads will be used.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
/// * `include_endpoints` - Whether to include the endpoints of paths in the path
///     lengths used to compute the betweenness
/// * `normalized` - Whether to normalize the betweenness scores by the number
///     of distinct paths between all pairs of nodes
/// * `parallel_threshold` - The number of nodes to calculate the betweenness
///     centrality in parallel at, if the number of nodes in `graph` is less
///     than this value it will run in a single thread. A good default to use
///     here if you're not sure is `50` as that was found to be roughly the
///     number of nodes where parallelism improves performance
///
/// # Example
/// ```rust
/// use rustworkx_core::petgraph;
/// use rustworkx_core::centrality::betweenness_centrality;
///
/// let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[
///     (0, 4), (1, 2), (2, 3), (3, 4), (1, 4)
/// ]);
/// // Calculate the betweenness centrality
/// let output = betweenness_centrality(&g, true, true, 200);
/// assert_eq!(
///     vec![Some(0.4), Some(0.5), Some(0.45), Some(0.5), Some(0.75)],
///     output
/// );
/// ```
/// # See Also
/// [`edge_betweenness_centrality`]
pub fn betweenness_centrality<G>(
    graph: G,
    include_endpoints: bool,
    normalized: bool,
    parallel_threshold: usize,
) -> Vec<Option<f64>>
where
    G: NodeIndexable
        + IntoNodeIdentifiers
        + IntoNeighborsDirected
        + NodeCount
        + GraphProp
        + GraphBase
        + std::marker::Sync,
    <G as GraphBase>::NodeId: std::cmp::Eq + Hash + Send,
    // rustfmt deletes the following comments if placed inline above
    // + IntoNodeIdentifiers // for node_identifiers()
    // + IntoNeighborsDirected // for neighbors()
    // + NodeCount // for node_count
    // + GraphProp // for is_directed
{
    // Correspondence of variable names to quantities in the paper is as follows:
    //
    // P -- predecessors
    // S -- verts_sorted_by_distance,
    //      vertices in order of non-decreasing distance from s
    // Q -- Q
    // sigma -- sigma
    // delta -- delta
    // d -- distance
    let max_index = graph.node_bound();

    let mut betweenness: Vec<Option<f64>> = vec![None; max_index];
    for node_s in graph.node_identifiers() {
        let is: usize = graph.to_index(node_s);
        betweenness[is] = Some(0.0);
    }
    let locked_betweenness = RwLock::new(&mut betweenness);
    let node_indices: Vec<G::NodeId> = graph.node_identifiers().collect();

    CondIterator::new(node_indices, graph.node_count() >= parallel_threshold)
        .map(|node_s| (shortest_path_for_centrality(&graph, &node_s), node_s))
        .for_each(|(mut shortest_path_calc, node_s)| {
            _accumulate_vertices(
                &locked_betweenness,
                max_index,
                &mut shortest_path_calc,
                node_s,
                &graph,
                include_endpoints,
            );
        });

    _rescale(
        &mut betweenness,
        graph.node_count(),
        normalized,
        graph.is_directed(),
        include_endpoints,
    );

    betweenness
}

/// Compute the edge betweenness centrality of all edges in a graph.
///
/// The algorithm used in this function is based on:
///
/// Ulrik Brandes: On Variants of Shortest-Path Betweenness
/// Centrality and their Generic Computation.
/// Social Networks 30(2):136-145, 2008.
/// <https://doi.org/10.1016/j.socnet.2007.11.001>.
///
/// This function is multithreaded and will run in parallel if the number
/// of nodes in the graph is above the value of ``parallel_threshold``. If the
/// function will be running in parallel the env var ``RAYON_NUM_THREADS`` can
/// be used to adjust how many threads will be used.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
/// * `normalized` - Whether to normalize the betweenness scores by the number
///     of distinct paths between all pairs of nodes
/// * `parallel_threshold` - The number of nodes to calculate the betweenness
///     centrality in parallel at, if the number of nodes in `graph` is less
///     than this value it will run in a single thread. A good default to use
///     here if you're not sure is `50` as that was found to be roughly the
///     number of nodes where parallelism improves performance
///
/// # Example
/// ```rust
/// use rustworkx_core::petgraph;
/// use rustworkx_core::centrality::edge_betweenness_centrality;
///
/// let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[
///     (0, 4), (1, 2), (1, 3), (2, 3), (3, 4), (1, 4)
/// ]);
///
/// let output = edge_betweenness_centrality(&g, false, 200);
/// let expected = vec![Some(4.0), Some(2.0), Some(1.0), Some(2.0), Some(3.0), Some(3.0)];
/// assert_eq!(output, expected);
/// ```
/// # See Also
/// [`betweenness_centrality`]
pub fn edge_betweenness_centrality<G>(
    graph: G,
    normalized: bool,
    parallel_threshold: usize,
) -> Vec<Option<f64>>
where
    G: NodeIndexable
        + EdgeIndexable
        + IntoEdges
        + IntoNodeIdentifiers
        + IntoNeighborsDirected
        + NodeCount
        + EdgeCount
        + GraphProp
        + Sync,
    G::NodeId: Eq + Hash + Send,
    G::EdgeId: Eq + Hash + Send,
{
    let max_index = graph.node_bound();
    let mut betweenness = vec![None; graph.edge_bound()];
    for edge in graph.edge_references() {
        let is: usize = EdgeIndexable::to_index(&graph, edge.id());
        betweenness[is] = Some(0.0);
    }
    let locked_betweenness = RwLock::new(&mut betweenness);
    let node_indices: Vec<G::NodeId> = graph.node_identifiers().collect();
    CondIterator::new(node_indices, graph.node_count() >= parallel_threshold)
        .map(|node_s| shortest_path_for_edge_centrality(&graph, &node_s))
        .for_each(|mut shortest_path_calc| {
            accumulate_edges(
                &locked_betweenness,
                max_index,
                &mut shortest_path_calc,
                &graph,
            );
        });

    _rescale(
        &mut betweenness,
        graph.node_count(),
        normalized,
        graph.is_directed(),
        true,
    );
    betweenness
}

fn _rescale(
    betweenness: &mut [Option<f64>],
    node_count: usize,
    normalized: bool,
    directed: bool,
    include_endpoints: bool,
) {
    let mut do_scale = true;
    let mut scale = 1.0;
    if normalized {
        if include_endpoints {
            if node_count < 2 {
                do_scale = false;
            } else {
                scale = 1.0 / (node_count * (node_count - 1)) as f64;
            }
        } else if node_count <= 2 {
            do_scale = false;
        } else {
            scale = 1.0 / ((node_count - 1) * (node_count - 2)) as f64;
        }
    } else if !directed {
        scale = 0.5;
    } else {
        do_scale = false;
    }
    if do_scale {
        for x in betweenness.iter_mut() {
            *x = x.map(|y| y * scale);
        }
    }
}

fn _accumulate_vertices<G>(
    locked_betweenness: &RwLock<&mut Vec<Option<f64>>>,
    max_index: usize,
    path_calc: &mut ShortestPathData<G>,
    node_s: <G as GraphBase>::NodeId,
    graph: G,
    include_endpoints: bool,
) where
    G: NodeIndexable
        + IntoNodeIdentifiers
        + IntoNeighborsDirected
        + NodeCount
        + GraphProp
        + GraphBase
        + std::marker::Sync,
    <G as GraphBase>::NodeId: std::cmp::Eq + Hash,
{
    let mut delta = vec![0.0; max_index];
    for w in &path_calc.verts_sorted_by_distance {
        let iw = graph.to_index(*w);
        let coeff = (1.0 + delta[iw]) / path_calc.sigma[w];
        let p_w = path_calc.predecessors.get(w).unwrap();
        for v in p_w {
            let iv = graph.to_index(*v);
            delta[iv] += path_calc.sigma[v] * coeff;
        }
    }
    let mut betweenness = locked_betweenness.write().unwrap();
    if include_endpoints {
        let i_node_s = graph.to_index(node_s);
        betweenness[i_node_s] = betweenness[i_node_s]
            .map(|x| x + ((path_calc.verts_sorted_by_distance.len() - 1) as f64));
        for w in &path_calc.verts_sorted_by_distance {
            if *w != node_s {
                let iw = graph.to_index(*w);
                betweenness[iw] = betweenness[iw].map(|x| x + delta[iw] + 1.0);
            }
        }
    } else {
        for w in &path_calc.verts_sorted_by_distance {
            if *w != node_s {
                let iw = graph.to_index(*w);
                betweenness[iw] = betweenness[iw].map(|x| x + delta[iw]);
            }
        }
    }
}

fn accumulate_edges<G>(
    locked_betweenness: &RwLock<&mut Vec<Option<f64>>>,
    max_index: usize,
    path_calc: &mut ShortestPathDataWithEdges<G>,
    graph: G,
) where
    G: NodeIndexable + EdgeIndexable + Sync,
    G::NodeId: Eq + Hash,
    G::EdgeId: Eq + Hash,
{
    let mut delta = vec![0.0; max_index];
    for w in &path_calc.verts_sorted_by_distance {
        let iw = NodeIndexable::to_index(&graph, *w);
        let coeff = (1.0 + delta[iw]) / path_calc.sigma[w];
        let p_w = path_calc.predecessors.get(w).unwrap();
        let e_w = path_calc.predecessor_edges.get(w).unwrap();
        let mut betweenness = locked_betweenness.write().unwrap();
        for i in 0..p_w.len() {
            let v = p_w[i];
            let iv = NodeIndexable::to_index(&graph, v);
            let ie = EdgeIndexable::to_index(&graph, e_w[i]);
            let c = path_calc.sigma[&v] * coeff;
            betweenness[ie] = betweenness[ie].map(|x| x + c);
            delta[iv] += c;
        }
    }
}

struct ShortestPathData<G>
where
    G: GraphBase,
    <G as GraphBase>::NodeId: std::cmp::Eq + Hash,
{
    verts_sorted_by_distance: Vec<G::NodeId>,
    predecessors: HashMap<G::NodeId, Vec<G::NodeId>>,
    sigma: HashMap<G::NodeId, f64>,
}

fn shortest_path_for_centrality<G>(graph: G, node_s: &G::NodeId) -> ShortestPathData<G>
where
    G: NodeIndexable + IntoNodeIdentifiers + IntoNeighborsDirected + NodeCount + GraphBase,
    <G as GraphBase>::NodeId: std::cmp::Eq + Hash,
{
    let mut verts_sorted_by_distance: Vec<G::NodeId> = Vec::new(); // a stack
    let c = graph.node_count();
    let mut predecessors = HashMap::<G::NodeId, Vec<G::NodeId>>::with_capacity(c);
    let mut sigma = HashMap::<G::NodeId, f64>::with_capacity(c);
    let mut distance = HashMap::<G::NodeId, i64>::with_capacity(c);
    #[allow(non_snake_case)]
    let mut Q: VecDeque<G::NodeId> = VecDeque::with_capacity(c);

    for node in graph.node_identifiers() {
        predecessors.insert(node, Vec::new());
        sigma.insert(node, 0.0);
        distance.insert(node, -1);
    }
    sigma.insert(*node_s, 1.0);
    distance.insert(*node_s, 0);
    Q.push_back(*node_s);
    while let Some(v) = Q.pop_front() {
        verts_sorted_by_distance.push(v);
        let distance_v = distance[&v];
        for w in graph.neighbors(v) {
            if distance[&w] < 0 {
                Q.push_back(w);
                distance.insert(w, distance_v + 1);
            }
            if distance[&w] == distance_v + 1 {
                sigma.insert(w, sigma[&w] + sigma[&v]);
                let e_p = predecessors.get_mut(&w).unwrap();
                e_p.push(v);
            }
        }
    }
    verts_sorted_by_distance.reverse(); // will be effectively popping from the stack
    ShortestPathData {
        verts_sorted_by_distance,
        predecessors,
        sigma,
    }
}

struct ShortestPathDataWithEdges<G>
where
    G: GraphBase,
    G::NodeId: Eq + Hash,
    G::EdgeId: Eq + Hash,
{
    verts_sorted_by_distance: Vec<G::NodeId>,
    predecessors: HashMap<G::NodeId, Vec<G::NodeId>>,
    predecessor_edges: HashMap<G::NodeId, Vec<G::EdgeId>>,
    sigma: HashMap<G::NodeId, f64>,
}

fn shortest_path_for_edge_centrality<G>(
    graph: G,
    node_s: &G::NodeId,
) -> ShortestPathDataWithEdges<G>
where
    G: NodeIndexable
        + IntoNodeIdentifiers
        + IntoNeighborsDirected
        + NodeCount
        + GraphBase
        + IntoEdges,
    G::NodeId: Eq + Hash,
    G::EdgeId: Eq + Hash,
{
    let mut verts_sorted_by_distance: Vec<G::NodeId> = Vec::new(); // a stack
    let c = graph.node_count();
    let mut predecessors = HashMap::<G::NodeId, Vec<G::NodeId>>::with_capacity(c);
    let mut predecessor_edges = HashMap::<G::NodeId, Vec<G::EdgeId>>::with_capacity(c);
    let mut sigma = HashMap::<G::NodeId, f64>::with_capacity(c);
    let mut distance = HashMap::<G::NodeId, i64>::with_capacity(c);
    #[allow(non_snake_case)]
    let mut Q: VecDeque<G::NodeId> = VecDeque::with_capacity(c);

    for node in graph.node_identifiers() {
        predecessors.insert(node, Vec::new());
        predecessor_edges.insert(node, Vec::new());
        sigma.insert(node, 0.0);
        distance.insert(node, -1);
    }
    sigma.insert(*node_s, 1.0);
    distance.insert(*node_s, 0);
    Q.push_back(*node_s);
    while let Some(v) = Q.pop_front() {
        verts_sorted_by_distance.push(v);
        let distance_v = distance[&v];
        for edge in graph.edges(v) {
            let w = edge.target();
            if distance[&w] < 0 {
                Q.push_back(w);
                distance.insert(w, distance_v + 1);
            }
            if distance[&w] == distance_v + 1 {
                sigma.insert(w, sigma[&w] + sigma[&v]);
                let e_p = predecessors.get_mut(&w).unwrap();
                e_p.push(v);
                predecessor_edges.get_mut(&w).unwrap().push(edge.id());
            }
        }
    }
    verts_sorted_by_distance.reverse(); // will be effectively popping from the stack
    ShortestPathDataWithEdges {
        verts_sorted_by_distance,
        predecessors,
        predecessor_edges,
        sigma,
    }
}

#[cfg(test)]
mod test_edge_betweenness_centrality {
    use crate::centrality::edge_betweenness_centrality;
    use petgraph::graph::edge_index;
    use petgraph::prelude::StableGraph;
    use petgraph::Undirected;

    macro_rules! assert_almost_equal {
        ($x:expr, $y:expr, $d:expr) => {
            if ($x - $y).abs() >= $d {
                panic!("{} != {} within delta of {}", $x, $y, $d);
            }
        };
    }

    #[test]
    fn test_undirected_graph_normalized() {
        let graph = petgraph::graph::UnGraph::<(), ()>::from_edges(&[
            (0, 6),
            (0, 4),
            (0, 1),
            (0, 5),
            (1, 6),
            (1, 7),
            (1, 3),
            (1, 4),
            (2, 6),
            (2, 3),
            (3, 5),
            (3, 7),
            (3, 6),
            (4, 5),
            (5, 6),
        ]);
        let output = edge_betweenness_centrality(&graph, true, 50);
        let result = output.iter().map(|x| x.unwrap()).collect::<Vec<f64>>();
        let expected_values = vec![
            0.1023809, 0.0547619, 0.0922619, 0.05654762, 0.09940476, 0.125, 0.09940476, 0.12440476,
            0.12857143, 0.12142857, 0.13511905, 0.125, 0.06547619, 0.08869048, 0.08154762,
        ];
        for i in 0..15 {
            assert_almost_equal!(result[i], expected_values[i], 1e-4);
        }
    }

    #[test]
    fn test_undirected_graph_unnormalized() {
        let graph = petgraph::graph::UnGraph::<(), ()>::from_edges(&[
            (0, 2),
            (0, 4),
            (0, 1),
            (1, 3),
            (1, 5),
            (1, 7),
            (2, 7),
            (2, 3),
            (3, 5),
            (3, 6),
            (4, 6),
            (5, 7),
        ]);
        let output = edge_betweenness_centrality(&graph, false, 50);
        let result = output.iter().map(|x| x.unwrap()).collect::<Vec<f64>>();
        let expected_values = vec![
            3.83333, 5.5, 5.33333, 3.5, 2.5, 3.0, 3.5, 4.0, 3.66667, 6.5, 3.5, 2.16667,
        ];
        for i in 0..12 {
            assert_almost_equal!(result[i], expected_values[i], 1e-4);
        }
    }

    #[test]
    fn test_directed_graph_normalized() {
        let graph = petgraph::graph::DiGraph::<(), ()>::from_edges(&[
            (0, 1),
            (1, 0),
            (1, 3),
            (1, 2),
            (1, 4),
            (2, 3),
            (2, 4),
            (2, 1),
            (3, 2),
            (4, 3),
        ]);
        let output = edge_betweenness_centrality(&graph, true, 50);
        let result = output.iter().map(|x| x.unwrap()).collect::<Vec<f64>>();
        let expected_values = vec![0.2, 0.2, 0.1, 0.1, 0.1, 0.05, 0.1, 0.3, 0.35, 0.2];
        for i in 0..10 {
            assert_almost_equal!(result[i], expected_values[i], 1e-4);
        }
    }

    #[test]
    fn test_directed_graph_unnormalized() {
        let graph = petgraph::graph::DiGraph::<(), ()>::from_edges(&[
            (0, 4),
            (1, 0),
            (1, 3),
            (2, 3),
            (2, 4),
            (2, 0),
            (3, 4),
            (3, 2),
            (3, 1),
            (4, 1),
        ]);
        let output = edge_betweenness_centrality(&graph, false, 50);
        let result = output.iter().map(|x| x.unwrap()).collect::<Vec<f64>>();
        let expected_values = vec![4.5, 3.0, 6.5, 1.5, 1.5, 1.5, 1.5, 4.5, 2.0, 7.5];
        for i in 0..10 {
            assert_almost_equal!(result[i], expected_values[i], 1e-4);
        }
    }

    #[test]
    fn test_stable_graph_with_removed_edges() {
        let mut graph: StableGraph<(), (), Undirected> =
            StableGraph::from_edges(&[(0, 1), (1, 2), (2, 3), (3, 0)]);
        graph.remove_edge(edge_index(1));
        let result = edge_betweenness_centrality(&graph, false, 50);
        let expected_values = vec![Some(3.0), None, Some(3.0), Some(4.0)];
        assert_eq!(result, expected_values);
    }
}

/// Compute the eigenvector centrality of a graph
///
/// For details on the eigenvector centrality refer to:
///
/// Phillip Bonacich. “Power and Centrality: A Family of Measures.”
/// American Journal of Sociology 92(5):1170–1182, 1986
/// <https://doi.org/10.1086/228631>
///
/// This function uses a power iteration method to compute the eigenvector
/// and convergence is not guaranteed. The function will stop when `max_iter`
/// iterations is reached or when the computed vector between two iterations
/// is smaller than the error tolerance multiplied by the number of nodes.
/// The implementation of this algorithm is based on the NetworkX
/// [`eigenvector_centrality()`](https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.eigenvector_centrality.html)
/// function.
///
/// In the case of multigraphs the weights of any parallel edges will be
/// summed when computing the eigenvector centrality.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
/// * `weight_fn` - An input callable that will be passed the `EdgeRef` for
///     an edge in the graph and is expected to return a `Result<f64>` of
///     the weight of that edge.
/// * `max_iter` - The maximum number of iterations in the power method. If
///     set to `None` a default value of 100 is used.
/// * `tol` - The error tolerance used when checking for convergence in the
///     power method. If set to `None` a default value of 1e-6 is used.
///
/// # Example
/// ```rust
/// use rustworkx_core::Result;
/// use rustworkx_core::petgraph;
/// use rustworkx_core::petgraph::visit::{IntoEdges, IntoNodeIdentifiers};
/// use rustworkx_core::centrality::eigenvector_centrality;
///
/// let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[
///     (0, 1), (1, 2)
/// ]);
/// // Calculate the eigenvector centrality
/// let output: Result<Option<Vec<f64>>> = eigenvector_centrality(&g, |_| {Ok(1.)}, None, None);
/// ```
pub fn eigenvector_centrality<G, F, E>(
    graph: G,
    mut weight_fn: F,
    max_iter: Option<usize>,
    tol: Option<f64>,
) -> Result<Option<Vec<f64>>, E>
where
    G: NodeIndexable + IntoNodeIdentifiers + IntoNeighbors + IntoEdges + NodeCount,
    G::NodeId: Eq + std::hash::Hash,
    F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
    let tol: f64 = tol.unwrap_or(1e-6);
    let max_iter = max_iter.unwrap_or(100);
    let mut x: Vec<f64> = vec![1.; graph.node_bound()];
    let node_count = graph.node_count();
    for _ in 0..max_iter {
        let x_last = x.clone();
        for node_index in graph.node_identifiers() {
            let node = graph.to_index(node_index);
            for edge in graph.edges(node_index) {
                let w = weight_fn(edge)?;
                let neighbor = edge.target();
                x[graph.to_index(neighbor)] += x_last[node] * w;
            }
        }
        let norm: f64 = x.iter().map(|val| val.powi(2)).sum::<f64>().sqrt();
        if norm == 0. {
            return Ok(None);
        }
        for v in x.iter_mut() {
            *v /= norm;
        }
        if (0..x.len())
            .map(|node| (x[node] - x_last[node]).abs())
            .sum::<f64>()
            < node_count as f64 * tol
        {
            return Ok(Some(x));
        }
    }
    Ok(None)
}

/// Compute the Katz centrality of a graph
///
/// For details on the Katz centrality refer to:
///
/// Leo Katz. “A New Status Index Derived from Sociometric Index.”
/// Psychometrika 18(1):39–43, 1953
/// <https://link.springer.com/content/pdf/10.1007/BF02289026.pdf>
///
/// This function uses a power iteration method to compute the eigenvector
/// and convergence is not guaranteed. The function will stop when `max_iter`
/// iterations is reached or when the computed vector between two iterations
/// is smaller than the error tolerance multiplied by the number of nodes.
/// The implementation of this algorithm is based on the NetworkX
/// [`katz_centrality()`](https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.katz_centrality.html)
/// function.
///
/// In the case of multigraphs the weights of any parallel edges will be
/// summed when computing the eigenvector centrality.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
/// * `weight_fn` - An input callable that will be passed the `EdgeRef` for
///     an edge in the graph and is expected to return a `Result<f64>` of
///     the weight of that edge.
/// * `alpha` - Attenuation factor. If set to `None`, a default value of 0.1 is used.
/// * `beta_map` - Immediate neighbourhood weights. Must contain all node indices or be `None`.
/// * `beta_scalar` - Immediate neighbourhood scalar that replaces `beta_map` in case `beta_map` is None.
///     Defaults to 1.0 in case `None` is provided.
/// * `max_iter` - The maximum number of iterations in the power method. If
///     set to `None` a default value of 100 is used.
/// * `tol` - The error tolerance used when checking for convergence in the
///     power method. If set to `None` a default value of 1e-6 is used.
///
/// # Example
/// ```rust
/// use rustworkx_core::Result;
/// use rustworkx_core::petgraph;
/// use rustworkx_core::petgraph::visit::{IntoEdges, IntoNodeIdentifiers};
/// use rustworkx_core::centrality::katz_centrality;
///
/// let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[
///     (0, 1), (1, 2)
/// ]);
/// // Calculate the eigenvector centrality
/// let output: Result<Option<Vec<f64>>> = katz_centrality(&g, |_| {Ok(1.)}, None, None, None, None, None);
/// let centralities = output.unwrap().unwrap();
/// assert!(centralities[1] > centralities[0], "Node 1 is more central than node 0");
/// assert!(centralities[1] > centralities[2], "Node 1 is more central than node 2");
/// ```
pub fn katz_centrality<G, F, E>(
    graph: G,
    mut weight_fn: F,
    alpha: Option<f64>,
    beta_map: Option<HashMap<usize, f64>>,
    beta_scalar: Option<f64>,
    max_iter: Option<usize>,
    tol: Option<f64>,
) -> Result<Option<Vec<f64>>, E>
where
    G: NodeIndexable + IntoNodeIdentifiers + IntoNeighbors + IntoEdges + NodeCount,
    G::NodeId: Eq + std::hash::Hash,
    F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
    let alpha: f64 = alpha.unwrap_or(0.1);

    let mut beta: HashMap<usize, f64> = beta_map.unwrap_or_else(HashMap::new);

    if beta.is_empty() {
        // beta_map was none
        // populate hashmap with default value
        let beta_scalar = beta_scalar.unwrap_or(1.0);
        for node_index in graph.node_identifiers() {
            let node = graph.to_index(node_index);
            beta.insert(node, beta_scalar);
        }
    } else {
        // Check if beta contains all node indices
        for node_index in graph.node_identifiers() {
            let node = graph.to_index(node_index);
            if !beta.contains_key(&node) {
                return Ok(None); // beta_map was provided but did not include all nodes
            }
        }
    }

    let tol: f64 = tol.unwrap_or(1e-6);
    let max_iter = max_iter.unwrap_or(1000);

    let mut x: Vec<f64> = vec![0.; graph.node_bound()];
    let node_count = graph.node_count();
    for _ in 0..max_iter {
        let x_last = x.clone();
        x = vec![0.; graph.node_bound()];
        for node_index in graph.node_identifiers() {
            let node = graph.to_index(node_index);
            for edge in graph.edges(node_index) {
                let w = weight_fn(edge)?;
                let neighbor = edge.target();
                x[graph.to_index(neighbor)] += x_last[node] * w;
            }
        }
        for node_index in graph.node_identifiers() {
            let node = graph.to_index(node_index);
            x[node] = alpha * x[node] + beta.get(&node).unwrap_or(&0.0);
        }
        if (0..x.len())
            .map(|node| (x[node] - x_last[node]).abs())
            .sum::<f64>()
            < node_count as f64 * tol
        {
            // Normalize vector
            let norm: f64 = x.iter().map(|val| val.powi(2)).sum::<f64>().sqrt();
            if norm == 0. {
                return Ok(None);
            }
            for v in x.iter_mut() {
                *v /= norm;
            }

            return Ok(Some(x));
        }
    }

    Ok(None)
}

#[cfg(test)]
mod test_eigenvector_centrality {

    use crate::centrality::eigenvector_centrality;
    use crate::petgraph;
    use crate::Result;

    macro_rules! assert_almost_equal {
        ($x:expr, $y:expr, $d:expr) => {
            if ($x - $y).abs() >= $d {
                panic!("{} != {} within delta of {}", $x, $y, $d);
            }
        };
    }
    #[test]
    fn test_no_convergence() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[(0, 1), (1, 2)]);
        let output: Result<Option<Vec<f64>>> =
            eigenvector_centrality(&g, |_| Ok(1.), Some(0), None);
        let result = output.unwrap();
        assert_eq!(None, result);
    }

    #[test]
    fn test_undirected_complete_graph() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges([
            (0, 1),
            (0, 2),
            (0, 3),
            (0, 4),
            (1, 2),
            (1, 3),
            (1, 4),
            (2, 3),
            (2, 4),
            (3, 4),
        ]);
        let output: Result<Option<Vec<f64>>> = eigenvector_centrality(&g, |_| Ok(1.), None, None);
        let result = output.unwrap().unwrap();
        let expected_value: f64 = (1_f64 / 5_f64).sqrt();
        let expected_values: Vec<f64> = vec![expected_value; 5];
        for i in 0..5 {
            assert_almost_equal!(expected_values[i], result[i], 1e-4);
        }
    }

    #[test]
    fn test_undirected_path_graph() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[(0, 1), (1, 2)]);
        let output: Result<Option<Vec<f64>>> = eigenvector_centrality(&g, |_| Ok(1.), None, None);
        let result = output.unwrap().unwrap();
        let expected_values: Vec<f64> = vec![0.5, 0.7071, 0.5];
        for i in 0..3 {
            assert_almost_equal!(expected_values[i], result[i], 1e-4);
        }
    }

    #[test]
    fn test_directed_graph() {
        let g = petgraph::graph::DiGraph::<i32, ()>::from_edges([
            (0, 1),
            (0, 2),
            (1, 3),
            (2, 1),
            (2, 4),
            (3, 1),
            (3, 4),
            (3, 5),
            (4, 5),
            (4, 6),
            (4, 7),
            (5, 7),
            (6, 0),
            (6, 4),
            (6, 7),
            (7, 5),
            (7, 6),
        ]);
        let output: Result<Option<Vec<f64>>> = eigenvector_centrality(&g, |_| Ok(2.), None, None);
        let result = output.unwrap().unwrap();
        let expected_values: Vec<f64> = vec![
            0.2140437, 0.2009269, 0.1036383, 0.0972886, 0.3113323, 0.4891686, 0.4420605, 0.6016448,
        ];
        for i in 0..8 {
            assert_almost_equal!(expected_values[i], result[i], 1e-4);
        }
    }
}

#[cfg(test)]
mod test_katz_centrality {

    use crate::centrality::katz_centrality;
    use crate::petgraph;
    use crate::Result;
    use hashbrown::HashMap;

    macro_rules! assert_almost_equal {
        ($x:expr, $y:expr, $d:expr) => {
            if ($x - $y).abs() >= $d {
                panic!("{} != {} within delta of {}", $x, $y, $d);
            }
        };
    }
    #[test]
    fn test_no_convergence() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[(0, 1), (1, 2)]);
        let output: Result<Option<Vec<f64>>> =
            katz_centrality(&g, |_| Ok(1.), None, None, None, Some(0), None);
        let result = output.unwrap();
        assert_eq!(None, result);
    }

    #[test]
    fn test_incomplete_beta() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[(0, 1), (1, 2)]);
        let beta_map: HashMap<usize, f64> = [(0, 1.0)].iter().cloned().collect();
        let output: Result<Option<Vec<f64>>> =
            katz_centrality(&g, |_| Ok(1.), None, Some(beta_map), None, None, None);
        let result = output.unwrap();
        assert_eq!(None, result);
    }

    #[test]
    fn test_complete_beta() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[(0, 1), (1, 2)]);
        let beta_map: HashMap<usize, f64> =
            [(0, 0.5), (1, 1.0), (2, 0.5)].iter().cloned().collect();
        let output: Result<Option<Vec<f64>>> =
            katz_centrality(&g, |_| Ok(1.), None, Some(beta_map), None, None, None);
        let result = output.unwrap().unwrap();
        let expected_values: Vec<f64> =
            vec![0.4318894504492167, 0.791797325823564, 0.4318894504492167];
        for i in 0..3 {
            assert_almost_equal!(expected_values[i], result[i], 1e-4);
        }
    }

    #[test]
    fn test_undirected_complete_graph() {
        let g = petgraph::graph::UnGraph::<i32, ()>::from_edges([
            (0, 1),
            (0, 2),
            (0, 3),
            (0, 4),
            (1, 2),
            (1, 3),
            (1, 4),
            (2, 3),
            (2, 4),
            (3, 4),
        ]);
        let output: Result<Option<Vec<f64>>> =
            katz_centrality(&g, |_| Ok(1.), Some(0.2), None, Some(1.1), None, None);
        let result = output.unwrap().unwrap();
        let expected_value: f64 = (1_f64 / 5_f64).sqrt();
        let expected_values: Vec<f64> = vec![expected_value; 5];
        for i in 0..5 {
            assert_almost_equal!(expected_values[i], result[i], 1e-4);
        }
    }

    #[test]
    fn test_directed_graph() {
        let g = petgraph::graph::DiGraph::<i32, ()>::from_edges([
            (0, 1),
            (0, 2),
            (1, 3),
            (2, 1),
            (2, 4),
            (3, 1),
            (3, 4),
            (3, 5),
            (4, 5),
            (4, 6),
            (4, 7),
            (5, 7),
            (6, 0),
            (6, 4),
            (6, 7),
            (7, 5),
            (7, 6),
        ]);
        let output: Result<Option<Vec<f64>>> =
            katz_centrality(&g, |_| Ok(1.), None, None, None, None, None);
        let result = output.unwrap().unwrap();
        let expected_values: Vec<f64> = vec![
            0.3135463087489011,
            0.3719056758615039,
            0.3094350787809586,
            0.31527101632646026,
            0.3760169058294464,
            0.38618584417917906,
            0.35465874858087904,
            0.38976653416801743,
        ];

        for i in 0..8 {
            assert_almost_equal!(expected_values[i], result[i], 1e-4);
        }
    }
}

/// Compute the closeness centrality of each node in the graph.
///
/// The closeness centrality of a node `u` is the reciprocal of the average
/// shortest path distance to `u` over all `n-1` reachable nodes.
///
/// In the case of a graphs with more than one connected component there is
/// an alternative improved formula that calculates the closeness centrality
/// as "a ratio of the fraction of actors in the group who are reachable, to
/// the average distance" [^WF]. You can enable this by setting `wf_improved` to `true`.
///
/// [^WF] Wasserman, S., & Faust, K. (1994). Social Network Analysis:
///     Methods and Applications (Structural Analysis in the Social Sciences).
///     Cambridge: Cambridge University Press. doi:10.1017/CBO9780511815478
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
/// * `wf_improved` - If `true`, scale by the fraction of nodes reachable.
///
/// # Example
/// ```rust
/// use rustworkx_core::petgraph;
/// use rustworkx_core::centrality::closeness_centrality;
///
/// // Calculate the closeness centrality of Graph
/// let g = petgraph::graph::UnGraph::<i32, ()>::from_edges(&[
///     (0, 4), (1, 2), (2, 3), (3, 4), (1, 4)
/// ]);
/// let output = closeness_centrality(&g, true);
/// assert_eq!(
///     vec![Some(1./2.), Some(2./3.), Some(4./7.), Some(2./3.), Some(4./5.)],
///     output
/// );
///
/// // Calculate the closeness centrality of DiGraph
/// let dg = petgraph::graph::DiGraph::<i32, ()>::from_edges(&[
///     (0, 4), (1, 2), (2, 3), (3, 4), (1, 4)
/// ]);
/// let output = closeness_centrality(&dg, true);
/// assert_eq!(
///     vec![Some(0.), Some(0.), Some(1./4.), Some(1./3.), Some(4./5.)],
///     output
/// );
/// ```
pub fn closeness_centrality<G>(graph: G, wf_improved: bool) -> Vec<Option<f64>>
where
    G: NodeIndexable
        + IntoNodeIdentifiers
        + GraphBase
        + IntoEdges
        + Visitable
        + NodeCount
        + IntoEdgesDirected,
    G::NodeId: std::hash::Hash + Eq,
{
    let max_index = graph.node_bound();
    let mut closeness: Vec<Option<f64>> = vec![None; max_index];
    for node_s in graph.node_identifiers() {
        let is = graph.to_index(node_s);
        let map = dijkstra(Reversed(&graph), node_s, None, |_| 1);
        let reachable_nodes_count = map.len();
        let dists_sum: usize = map.into_values().sum();
        if reachable_nodes_count == 1 {
            closeness[is] = Some(0.0);
            continue;
        }
        closeness[is] = Some((reachable_nodes_count - 1) as f64 / dists_sum as f64);
        if wf_improved {
            let node_count = graph.node_count();
            closeness[is] = closeness[is]
                .map(|c| c * (reachable_nodes_count - 1) as f64 / (node_count - 1) as f64);
        }
    }
    closeness
}