1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use bit_set::BitSet;
use std::fmt::Display;
use std::io::Write;

pub use self::Etrans::{No, One, Two, More};

/* non-deterministic finite automaton */

// dirty optimisation
// states of the automaton built by the Thompson construction may have
// * A single e-trans, in the case of the f1nal states of an or
// * Two e-trans, in most cases
// * More, for the initial state on the NFA that may transition to the NFA
//   of each of the patterns
// To avoid systematically using an array, we use this structure:
pub enum Etrans {
    No,
    One(usize),
    Two(usize, usize),
    More(Vec<usize>)
}

impl Etrans {
    pub fn push(&mut self, item: usize) {
        match *self {
            No => *self = One(item),
            One(x) => *self = Two(x, item),
            Two(x, y) => *self = More(vec![x, y, item]),
            More(ref mut v) => v.push(item)
        }
    }
}

pub trait StateData {
    fn no_data() -> Self;
    fn combine(a: Self, b: Self) -> Self;
    fn is_final(&self) -> bool;
}

pub trait State {
    type Data: StateData;
    type Iter: Iterator<Item = usize>;

    fn new() -> Self;
    fn etransition<'a>(&'a self) -> &'a Etrans;
    fn transition(&self, c: u8) -> Self::Iter;
    fn data(&self) -> Self::Data;
}

pub struct Automaton<T> where T: State {
    pub states: Vec<T>,
    pub initial: usize
}

impl<T: State> Automaton<T> {
    // insert a new empty state and return its number
    pub fn create_state(&mut self) -> usize {
        self.states.push(T::new());
        self.states.len() - 1
    }

    pub fn moves(&self, st: &BitSet, c: u8) -> Vec<usize> {
        let mut ret = Vec::with_capacity(st.len());

        for s in st.iter() {
            for dst in self.states[s].transition(c) {
                ret.push(dst);
            }
        }

        ret
    }

    #[inline(always)]
    pub fn eclosure_(&self, st: usize) -> (BitSet, T::Data) {
        self.eclosure(&[st])
    }

    pub fn eclosure(&self, st: &[usize]) -> (BitSet, T::Data) {
        let mut ret = BitSet::with_capacity(self.states.len());
        let mut ret_action = T::Data::no_data();
        let mut stack = Vec::with_capacity(st.len());

        macro_rules! add {
            ($state: expr) => {
                if !ret.contains($state) {
                    ret.insert($state);
                    stack.push($state);

                    ret_action = T::Data::combine(
                        self.states[$state].data(),
                        ret_action
                    );
                }
            }
        }

        for &s in st.iter() {
            add!(s);
        }

        while !stack.is_empty() {
            let st = stack.pop().unwrap();
            let st = &self.states[st];

            match *st.etransition() {
                No => (),
                One(i) => add!(i),
                Two(i, j) => { add!(i) ; add!(j) }
                More(ref v) => {
                    for &i in v.iter() {
                        add!(i);
                    }
                }
            }
        }

        (ret, ret_action)
    }

    #[allow(dead_code)]
    #[allow(unused_must_use)]
    // outs the automaton as a dot file for graphviz
    // for debugging purposes
    pub fn todot(&self, out: &mut Write) where T::Data: Display + Eq {
        writeln!(out, "digraph automata {{");
        writeln!(out, "\trankdir = LR;");
        writeln!(out, "\tsize = \"4,4\";");
        writeln!(out, "\tnode [shape=box]; {};", self.initial);
        writeln!(out, "\tnode [shape=doublecircle];");
        write!(out, "\t");

        // outputs f1nal states as doublecircle-shaped nodes
        for st in 0 .. self.states.len() {
            if self.states[st].data() != T::Data::no_data() {
                write!(out, "{} ", st);
            }
        }

        writeln!(out, ";\n");
        writeln!(out, "\tnode [shape=circle];");

        for st in 0 .. self.states.len() {
            for ch in 0 .. 256 {
                for dst in self.states[st].transition(ch as u8) {
                    let mut esc = String::new();
                    esc.extend((ch as u8 as char).escape_default());
                    writeln!(out, "\t{} -> {} [label=\"{}\"];", st, dst, esc);
                }
            }

            match *self.states[st].etransition() {
                One(s) => {
                    writeln!(out, "\t{} -> {} [label=\"e\"];", st, s);
                }
                Two(s, t) => {
                    writeln!(out, "\t{} -> {} [label=\"e\"];", st, s);
                    writeln!(out, "\t{} -> {} [label=\"e\"];", st, t);
                }
                More(ref v) => {
                    for i in v.iter() {
                        writeln!(out, "\t{} -> {} [label=\"e\"];", st, *i);
                    }
                }
                _ => ()
            }
        }

        writeln!(out, "}}");
    }
}