1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! The `Pid` type.
#![allow(unsafe_code)]
use core::{fmt, num::NonZeroI32};
/// A process identifier as a raw integer.
pub type RawPid = i32;
/// `pid_t`—A non-zero Unix process ID.
///
/// This is a pid, and not a pidfd. It is not a file descriptor, and the
/// process it refers to could disappear at any time and be replaced by
/// another, unrelated, process.
///
/// On Linux, `Pid` values are also used to identify threads.
#[repr(transparent)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub struct Pid(NonZeroI32);
impl Pid {
/// A `Pid` corresponding to the init process (pid 1).
pub const INIT: Self = Self(match NonZeroI32::new(1) {
Some(n) => n,
None => panic!("unreachable"),
});
/// Converts a `RawPid` into a `Pid`.
///
/// Returns `Some` for positive values, and `None` for zero values.
///
/// This is safe because a `Pid` is a number without any guarantees for the
/// kernel. Non-child `Pid`s are always racy for any syscalls, but can only
/// cause logic errors. If you want race-free access to or control of
/// non-child processes, please consider other mechanisms like [pidfd] on
/// Linux.
///
/// Passing a negative number doesn't invoke undefined behavior, but it
/// may cause unexpected behavior.
///
/// [pidfd]: https://man7.org/linux/man-pages/man2/pidfd_open.2.html
#[inline]
pub const fn from_raw(raw: RawPid) -> Option<Self> {
debug_assert!(raw >= 0);
match NonZeroI32::new(raw) {
Some(non_zero) => Some(Self(non_zero)),
None => None,
}
}
/// Converts a known positive `RawPid` into a `Pid`.
///
/// Passing a negative number doesn't invoke undefined behavior, but it
/// may cause unexpected behavior.
///
/// # Safety
///
/// The caller must guarantee `raw` is non-zero.
#[inline]
pub const unsafe fn from_raw_unchecked(raw: RawPid) -> Self {
debug_assert!(raw > 0);
Self(NonZeroI32::new_unchecked(raw))
}
/// Creates a `Pid` holding the ID of the given child process.
#[cfg(feature = "std")]
#[inline]
pub fn from_child(child: &std::process::Child) -> Self {
let id = child.id();
// SAFETY: We know the returned ID is valid because it came directly
// from an OS API.
unsafe { Self::from_raw_unchecked(id as i32) }
}
/// Converts a `Pid` into a `NonZeroI32`.
#[inline]
pub const fn as_raw_nonzero(self) -> NonZeroI32 {
self.0
}
/// Converts a `Pid` into a `RawPid`.
///
/// This is the same as `self.as_raw_nonzero().get()`.
#[inline]
pub const fn as_raw_pid(self) -> RawPid {
self.0.get()
}
/// Converts an `Option<Pid>` into a `RawPid`.
#[inline]
pub const fn as_raw(pid: Option<Self>) -> RawPid {
match pid {
Some(pid) => pid.0.get(),
None => 0,
}
}
/// Test whether this pid represents the init process ([`Pid::INIT`]).
#[inline]
pub const fn is_init(self) -> bool {
self.0.get() == Self::INIT.0.get()
}
}
impl fmt::Display for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::Binary for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::Octal for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::LowerHex for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl fmt::UpperHex for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
#[cfg(lower_upper_exp_for_non_zero)]
impl fmt::LowerExp for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
#[cfg(lower_upper_exp_for_non_zero)]
impl fmt::UpperExp for Pid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_sizes() {
use core::mem::transmute;
assert_eq_size!(RawPid, NonZeroI32);
assert_eq_size!(RawPid, Pid);
assert_eq_size!(RawPid, Option<Pid>);
// Rustix doesn't depend on `Option<Pid>` matching the ABI of a raw integer
// for correctness, but it should work nonetheless.
const_assert_eq!(0 as RawPid, unsafe {
transmute::<Option<Pid>, RawPid>(None)
});
const_assert_eq!(4567 as RawPid, unsafe {
transmute::<Option<Pid>, RawPid>(Some(Pid::from_raw_unchecked(4567)))
});
}
#[test]
fn test_ctors() {
use std::num::NonZeroI32;
assert!(Pid::from_raw(0).is_none());
assert_eq!(
Pid::from_raw(77).unwrap().as_raw_nonzero(),
NonZeroI32::new(77).unwrap()
);
assert_eq!(Pid::from_raw(77).unwrap().as_raw_pid(), 77);
assert_eq!(Pid::as_raw(Pid::from_raw(77)), 77);
}
#[test]
fn test_specials() {
assert!(Pid::from_raw(1).unwrap().is_init());
assert_eq!(Pid::from_raw(1).unwrap(), Pid::INIT);
}
}