1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use std::borrow::Borrow;
use std::fmt::Debug;
use std::fmt::Display;
use std::hash::Hash;

use bitflags::bitflags;

use anyhow::Result;
use nom::IResult;
use std::io::Write;

bitflags! {
    /// Properties verified by the Semiring.
    pub struct SemiringProperties: u32 {
        /// For all a, b, c: Times(c, Plus(a, b)) = Plus(Times(c, a), Times(c, b)).
        const LEFT_SEMIRING =  0b00001;
        /// For all a, b, c: Times(Plus(a, b), c) = Plus(Times(a, c), Times(b, c)).
        const RIGHT_SEMIRING = 0b00010;
        /// For all a, b: Times(a, b) = Times(b, a).
        const COMMUTATIVE =    0b00100;
        /// For all a: Plus(a, a) = a.
        const IDEMPOTENT =     0b01000;
        /// For all a, b: Plus(a, b) = a or Plus(a, b) = b.
        const PATH =           0b10000;
        const SEMIRING = Self::LEFT_SEMIRING.bits | Self::RIGHT_SEMIRING.bits;
    }
}

/// For some operations, the weight set associated to a wFST must have the structure of a semiring.
/// `(S, +, *, 0, 1)` is a semiring if `(S, +, 0)` is a commutative monoid with identity element 0,
/// `(S, *, 1)` is a monoid with identity element `1`, `*` distributes over `+`,
/// `0` is an annihilator for `*`.
/// Thus, a semiring is a ring that may lack negation.
/// For more information : https://cs.nyu.edu/~mohri/pub/hwa.pdf
pub trait Semiring: Clone + PartialEq + PartialOrd + Debug + Hash + Eq + Sync + 'static {
    type Type: Clone + Debug;
    type ReverseWeight: Semiring + ReverseBack<Self>;

    fn zero() -> Self;
    fn one() -> Self;

    fn new(value: Self::Type) -> Self;

    fn plus<P: Borrow<Self>>(&self, rhs: P) -> Result<Self> {
        let mut w = self.clone();
        w.plus_assign(rhs)?;
        Ok(w)
    }
    fn plus_assign<P: Borrow<Self>>(&mut self, rhs: P) -> Result<()>;

    fn times<P: Borrow<Self>>(&self, rhs: P) -> Result<Self> {
        let mut w = self.clone();
        w.times_assign(rhs)?;
        Ok(w)
    }
    fn times_assign<P: Borrow<Self>>(&mut self, rhs: P) -> Result<()>;

    /// Borrow underneath value.
    fn value(&self) -> &Self::Type;
    /// Move underneath value.
    fn take_value(self) -> Self::Type;
    fn set_value(&mut self, value: Self::Type);
    fn is_one(&self) -> bool {
        *self == Self::one()
    }
    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
    fn reverse(&self) -> Result<Self::ReverseWeight>;
    fn properties() -> SemiringProperties;
}

pub trait ReverseBack<W> {
    fn reverse_back(&self) -> Result<W>;
}

/// Determines direction of division.
#[derive(Copy, Clone, PartialOrd, PartialEq)]
pub enum DivideType {
    /// Left division.
    DivideLeft,
    /// Right division.
    DivideRight,
    /// Division in a commutative semiring.
    DivideAny,
}

/// A semiring is said to be divisible if all non-0 elements admit an inverse,
/// that is if `S-{0}` is a group.
/// `(S, +, *, 0, 1)` is said to be weakly divisible if
/// for any `x` and `y` in `S` such that `x + y != 0`,
/// there exists at least one `z` such that `x = (x+y)*z`.
/// For more information : `https://cs.nyu.edu/~mohri/pub/hwa.pdf`
pub trait WeaklyDivisibleSemiring: Semiring {
    fn divide_assign(&mut self, rhs: &Self, divide_type: DivideType) -> Result<()>;
    fn divide(&self, rhs: &Self, divide_type: DivideType) -> Result<Self> {
        let mut w = self.clone();
        w.divide_assign(rhs, divide_type)?;
        Ok(w)
    }
}

/// A semiring `(S, ⊕, ⊗, 0, 1)` is said to be complete if for any index set `I` and any family
/// `(ai)i ∈ I` of elements of `S`, `⊕(ai)i∈I` is an element of `S` whose definition
/// does not depend on the order of the terms in the ⊕-sum.
/// Note that in a complete semiring all weighted transducers are regulated since all
/// infinite sums are elements of S.
/// For more information : `https://cs.nyu.edu/~mohri/pub/hwa.pdf`
pub trait CompleteSemiring: Semiring {}

/// A complete semiring S is a starsemiring that is a semiring that can be augmented with an
/// internal unary closure operation ∗ defined by `a∗=⊕an (infinite sum) for any a ∈ S`.
/// Furthermore, associativity, commutativity, and distributivity apply to these infinite sums.
/// For more information : `https://cs.nyu.edu/~mohri/pub/hwa.pdf`
pub trait StarSemiring: Semiring {
    fn closure(&self) -> Self;
}

pub trait WeightQuantize: Semiring {
    fn quantize_assign(&mut self, delta: f32) -> Result<()>;
    fn quantize(&self, delta: f32) -> Result<Self> {
        let mut w = self.clone();
        w.quantize_assign(delta)?;
        Ok(w)
    }
}

macro_rules! impl_quantize_f32 {
    ($semiring: ident) => {
        impl WeightQuantize for $semiring {
            fn quantize_assign(&mut self, delta: f32) -> Result<()> {
                let v = *self.value();
                if v == f32::INFINITY || v == f32::NEG_INFINITY {
                    return Ok(());
                }
                self.set_value(((v / delta) + 0.5).floor() * delta);
                Ok(())
            }
        }
    };
}

macro_rules! display_semiring {
    ($semiring:tt) => {
        use std::fmt;
        impl fmt::Display for $semiring {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                write!(f, "{}", self.value())?;
                Ok(())
            }
        }
    };
}

macro_rules! partial_eq_and_hash_f32 {
    ($semiring:tt) => {
        impl PartialEq for $semiring {
            fn eq(&self, other: &Self) -> bool {
                // self.value() == other.value()
                let w1 = *self.value();
                let w2 = *other.value();
                w1 <= (w2 + KDELTA) && w2 <= (w1 + KDELTA)
            }
        }

        impl Hash for $semiring {
            fn hash<H: Hasher>(&self, state: &mut H) {
                self.value.hash(state)
            }
        }
    };
}

pub trait SerializableSemiring: Semiring + Display {
    fn weight_type() -> String;
    fn parse_binary(i: &[u8]) -> IResult<&[u8], Self>;
    fn write_binary<F: Write>(&self, file: &mut F) -> Result<()>;

    fn parse_text(i: &str) -> IResult<&str, Self>;
    fn write_text<F: Write>(&self, file: &mut F) -> Result<()> {
        // Use implementation of Display trait.
        write!(file, "{}", self)?;
        Ok(())
    }
}