1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::sync::Arc;

use anyhow::Result;

use crate::algorithms::compose::{IntervalSet, StateReachable};
use crate::algorithms::tr_compares::{ILabelCompare, OLabelCompare};
use crate::algorithms::{fst_convert_from_ref, tr_sort};
use crate::fst_impls::VectorFst;
use crate::fst_properties::FstProperties;
use crate::fst_traits::{CoreFst, ExpandedFst, Fst, MutableFst};
use crate::semirings::Semiring;
use crate::{Label, StateId, Tr, Trs, EPS_LABEL, NO_LABEL, UNASSIGNED};

#[derive(Debug, Clone, PartialEq)]
pub struct LabelReachableData {
    reach_input: bool,
    final_label: Label,
    label2index: HashMap<Label, Label>,
    interval_sets: Vec<IntervalSet>,
}

impl LabelReachableData {
    pub fn new(reach_input: bool) -> Self {
        Self {
            reach_input,
            final_label: NO_LABEL,
            label2index: HashMap::new(),
            interval_sets: Vec::new(),
        }
    }

    pub fn interval_set(&self, s: StateId) -> Result<&IntervalSet> {
        self.interval_sets
            .get(s)
            .ok_or_else(|| format_err!("Missing state {}", s))
    }

    pub fn final_label(&self) -> Label {
        self.final_label
    }

    pub fn label2index(&self) -> &HashMap<Label, Label> {
        &self.label2index
    }

    pub fn reach_input(&self) -> bool {
        self.reach_input
    }

    pub fn relabel(&mut self, label: Label) -> Label {
        if label == EPS_LABEL {
            return EPS_LABEL;
        }
        let n = self.label2index.len();
        *self.label2index.entry(label).or_insert_with(|| n + 1)
    }

    pub fn relabel_fst<W: Semiring, F: MutableFst<W>>(
        &mut self,
        fst: &mut F,
        relabel_input: bool,
    ) -> Result<()> {
        for s in 0..fst.num_states() {
            unsafe {
                let mut it_tr = fst.tr_iter_unchecked_mut(s);
                for idx_tr in 0..it_tr.len() {
                    let tr = it_tr.get_unchecked(idx_tr);
                    if relabel_input {
                        let new_ilabel = self.relabel(tr.ilabel);
                        it_tr.set_ilabel_unchecked(idx_tr, new_ilabel);
                    } else {
                        let new_olabel = self.relabel(tr.olabel);
                        it_tr.set_olabel_unchecked(idx_tr, new_olabel);
                    }
                }
            }
        }

        if relabel_input {
            tr_sort(fst, ILabelCompare {});
            fst.take_input_symbols();
        } else {
            tr_sort(fst, OLabelCompare {});
            fst.take_output_symbols();
        }

        Ok(())
    }

    // Returns relabeling pairs (cf. relabel.h::Relabel()). If avoid_collisions is
    // true, extra pairs are added to ensure no collisions when relabeling
    // automata that have labels unseen here.
    pub fn relabel_pairs(&self, avoid_collisions: bool) -> Vec<(Label, Label)> {
        let mut pairs = vec![];
        for (key, val) in self.label2index.iter() {
            if *val != self.final_label {
                pairs.push((*key, *val));
            }
        }

        if avoid_collisions {
            for i in 1..=self.label2index.len() {
                let it = self.label2index.get(&i);
                if it.is_none() || it.unwrap() == &self.final_label {
                    pairs.push((i, self.label2index.len() + 1));
                }
            }
        }

        pairs
    }
}

#[derive(Debug, Clone, PartialEq)]
pub struct LabelReachable {
    data: Arc<LabelReachableData>,
    reach_fst_input: bool,
}

impl LabelReachable {
    pub fn new<W: Semiring, F: Fst<W>>(fst: &F, reach_input: bool) -> Result<Self> {
        let data = Self::compute_data(fst, reach_input)?;

        Ok(Self {
            data: Arc::new(data),
            reach_fst_input: false,
        })
    }

    pub fn compute_data<W: Semiring, F: Fst<W>>(
        fst: &F,
        reach_input: bool,
    ) -> Result<LabelReachableData> {
        let mut fst: VectorFst<_> = fst_convert_from_ref(fst);

        let mut data = LabelReachableData::new(reach_input);
        let mut label2state = HashMap::new();

        let nstates = fst.num_states();
        Self::transform_fst(&mut fst, &mut data, &mut label2state);
        fst.compute_and_update_properties(FstProperties::ACYCLIC)?;
        Self::find_intervals(&fst, nstates, &mut data, &mut label2state)?;

        Ok(data)
    }

    pub fn new_from_data(data: Arc<LabelReachableData>) -> Self {
        Self {
            data,
            reach_fst_input: false,
        }
    }

    pub fn data(&self) -> &Arc<LabelReachableData> {
        &self.data
    }

    pub fn reach_input(&self) -> bool {
        self.data.reach_input
    }

    // Redirects labeled trs (input or output labels determined by ReachInput())
    // to new label-specific final states. Each original final state is
    // redirected via a transition labeled with kNoLabel to a new
    // kNoLabel-specific final state. Creates super-initial state for all states
    // with zero in-degree.
    fn transform_fst<W: Semiring>(
        fst: &mut VectorFst<W>,
        data: &mut LabelReachableData,
        label2state: &mut HashMap<Label, StateId>,
    ) {
        let ins = fst.num_states();
        let mut ons = ins;
        let mut indeg = vec![0; ins];
        // Redirects labeled trs to new final states.
        for s in 0..ins {
            let mut it_tr = unsafe { fst.tr_iter_unchecked_mut(s) };
            for idx_tr in 0..it_tr.len() {
                let tr = unsafe { it_tr.get_unchecked(idx_tr) };

                let label = if data.reach_input {
                    tr.ilabel
                } else {
                    tr.olabel
                };

                let nextstate = if label != EPS_LABEL {
                    match label2state.entry(label) {
                        Entry::Vacant(e) => {
                            let v = *e.insert(ons);
                            indeg.push(0);
                            ons += 1;
                            v
                        }
                        Entry::Occupied(e) => *e.get(),
                    }
                } else {
                    tr.nextstate
                };
                indeg[nextstate] += 1;
                unsafe { it_tr.set_nextstate_unchecked(idx_tr, nextstate) };
            }

            if let Some(final_weight) = unsafe { fst.final_weight_unchecked(s) } {
                if !final_weight.is_zero() {
                    let nextstate = match label2state.entry(NO_LABEL) {
                        Entry::Vacant(e) => {
                            let v = *e.insert(ons);
                            indeg.push(0);
                            ons += 1;
                            v
                        }
                        Entry::Occupied(e) => *e.get(),
                    };
                    unsafe {
                        fst.add_tr_unchecked(
                            s,
                            Tr::new(NO_LABEL, NO_LABEL, final_weight, nextstate),
                        )
                    };
                    indeg[nextstate] += 1;
                    unsafe { fst.delete_final_weight_unchecked(s) }
                }
            }
        }

        // Adds new final states to the FST.
        while fst.num_states() < ons {
            let s = fst.add_state();
            unsafe { fst.set_final_unchecked(s, W::one()) };
        }

        // Creates a super-initial state for all states with zero in-degree.
        let start = fst.add_state();
        unsafe { fst.set_start_unchecked(start) };
        for s in 0..start {
            if indeg[s] == 0 {
                unsafe { fst.add_tr_unchecked(start, Tr::new(0, 0, W::one(), s)) };
            }
        }
    }

    fn find_intervals<W: Semiring>(
        fst: &VectorFst<W>,
        ins: StateId,
        data: &mut LabelReachableData,
        label2state: &mut HashMap<Label, StateId>,
    ) -> Result<()> {
        let state_reachable = StateReachable::new(fst)?;
        let state2index = &state_reachable.state2index;
        let interval_sets = &mut data.interval_sets;
        *interval_sets = state_reachable.isets;
        interval_sets.resize_with(ins, IntervalSet::default);

        let label2index = &mut data.label2index;

        for (label, state) in label2state.iter() {
            let i = state2index[*state];
            label2index.insert(*label, i);
            if *label == NO_LABEL {
                data.final_label = i;
            }
        }
        label2state.clear();
        Ok(())
    }

    pub fn reach_init<W: Semiring, F: ExpandedFst<W>>(
        &mut self,
        fst: &Arc<F>,
        reach_input: bool,
    ) -> Result<()> {
        self.reach_fst_input = reach_input;

        let true_prop = if self.reach_fst_input {
            FstProperties::I_LABEL_SORTED
        } else {
            FstProperties::O_LABEL_SORTED
        };

        let props = fst.properties_check(true_prop)?;

        if !props.contains(true_prop) {
            bail!("LabelReachable::ReachInit: Fst is not sorted")
        }
        Ok(())
    }

    // Can reach this label from current state?
    // Original labels must be transformed by the Relabel methods above.
    pub fn reach_label(&self, current_state: StateId, label: Label) -> Result<bool> {
        if label == EPS_LABEL {
            return Ok(false);
        }
        Ok(self.data.interval_set(current_state)?.member(label))
    }

    // Can reach final state (via epsilon transitions) from this state?
    pub fn reach_final(&self, current_state: StateId) -> Result<bool> {
        Ok(self
            .data
            .interval_set(current_state)?
            .member(self.data.final_label()))
    }

    pub fn reach<'a, W: Semiring + 'a, T: Trs<W>>(
        &self,
        current_state: StateId,
        trs: T,
        aiter_begin: usize,
        aiter_end: usize,
        compute_weight: bool,
    ) -> Result<Option<(usize, usize, W)>> {
        let mut reach_begin = UNASSIGNED;
        let mut reach_end = UNASSIGNED;
        let mut reach_weight = W::zero();
        let interval_set = self.data.interval_set(current_state)?;
        let trs_slice = trs.trs();
        if 2 * (aiter_end - aiter_begin) < interval_set.len() {
            let mut reach_label = NO_LABEL;
            for pos in aiter_begin..aiter_end {
                let tr = unsafe { trs_slice.get_unchecked(pos) };
                let label = if self.reach_fst_input {
                    tr.ilabel
                } else {
                    tr.olabel
                };
                if label == reach_label || self.reach_label(current_state, label)? {
                    reach_label = label;
                    if reach_begin == UNASSIGNED {
                        reach_begin = pos;
                    }
                    reach_end = pos + 1;
                    if compute_weight {
                        reach_weight.plus_assign(&tr.weight)?;
                    }
                }
            }
        } else {
            let mut begin_low;
            let mut end_low = aiter_begin;
            for interval in interval_set.iter() {
                begin_low = self.lower_bound(trs_slice, end_low, aiter_end, interval.begin);
                end_low = self.lower_bound(trs_slice, begin_low, aiter_end, interval.end);
                if end_low - begin_low > 0 {
                    if reach_begin == UNASSIGNED {
                        reach_begin = begin_low;
                    }
                    reach_end = end_low;
                    if compute_weight {
                        for i in begin_low..end_low {
                            reach_weight
                                .plus_assign(unsafe { &trs_slice.get_unchecked(i).weight })?;
                        }
                    }
                }
            }
        }

        if reach_begin != UNASSIGNED {
            Ok(Some((reach_begin, reach_end, reach_weight)))
        } else {
            Ok(None)
        }
    }

    fn lower_bound<W: Semiring>(
        &self,
        trs: &[Tr<W>],
        aiter_begin: usize,
        aiter_end: usize,
        match_label: Label,
    ) -> usize {
        debug_assert!(match_label != NO_LABEL);
        let mut low = aiter_begin;
        let mut high = aiter_end;
        while low < high {
            let mid = low + (high - low) / 2;
            let tr = unsafe { trs.get_unchecked(mid) };
            let label = if self.reach_fst_input {
                tr.ilabel
            } else {
                tr.olabel
            };
            debug_assert!(label != NO_LABEL);
            if label < match_label {
                low = mid + 1;
            } else {
                high = mid;
            }
        }

        low
    }
}