1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
use std::collections::HashSet;
use std::slice::Iter as IterSlice;
use std::vec::IntoIter as IntoIterVec;
use superslice::Ext;
use unsafe_unwrap::UnsafeUnwrap;

/// Half-open integral interval [a, b) of signed integers of type T.
#[derive(PartialEq, Clone, Eq, Debug, Serialize, Deserialize)]
pub struct IntInterval {
    pub begin: usize,
    pub end: usize,
}

impl IntInterval {
    pub fn new(begin: usize, end: usize) -> Self {
        Self { begin, end }
    }
}

// Not using default implementation to make sure that begin is compared first
// as it plays a role in the normalize function
impl PartialOrd for IntInterval {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for IntInterval {
    fn cmp(&self, other: &Self) -> Ordering {
        if self.begin < other.begin {
            Ordering::Less
        } else if self.begin > other.begin {
            Ordering::Greater
        } else {
            // self.begin == other.begin
            if self.end < other.end {
                Ordering::Greater
            } else if self.end > other.end {
                Ordering::Less
            } else {
                // self.end == other.end
                Ordering::Equal
            }
        }
    }
}

/// Stores IntIntervals in a vector. In addition, keeps the count of points in
/// all intervals.
#[derive(Clone, PartialOrd, PartialEq, Debug)]
pub struct VectorIntervalStore {
    pub(crate) intervals: Vec<IntInterval>,
    count: Option<usize>,
}

impl Default for VectorIntervalStore {
    fn default() -> Self {
        Self {
            intervals: Vec::new(),
            count: None,
        }
    }
}

impl VectorIntervalStore {
    pub fn len(&self) -> usize {
        self.intervals.len()
    }

    pub fn push(&mut self, interval: IntInterval) {
        self.intervals.push(interval)
    }

    pub fn clear(&mut self) {
        self.intervals.clear();
        self.count = None;
    }

    pub fn count(&self) -> Option<usize> {
        self.count.clone()
    }

    pub fn set_count(&mut self, count: usize) {
        self.count = Some(count);
    }

    pub fn iter(&self) -> IterSlice<IntInterval> {
        self.intervals.iter()
    }

    pub fn into_iter(self) -> IntoIterVec<IntInterval> {
        self.intervals.into_iter()
    }
}

#[derive(PartialOrd, PartialEq, Default, Clone, Debug)]
pub struct IntervalSet {
    pub(crate) intervals: VectorIntervalStore,
}

impl IntervalSet {
    pub fn len(&self) -> usize {
        self.intervals.len()
    }

    pub fn push(&mut self, interval: IntInterval) {
        self.intervals.push(interval)
    }

    // Number of points in the intervals (undefined if not normalized).
    pub fn count(&self) -> Option<usize> {
        self.intervals.count()
    }

    pub fn clear(&mut self) {
        self.intervals.clear()
    }

    pub fn iter(&self) -> IterSlice<IntInterval> {
        self.intervals.iter()
    }

    pub fn into_iter(self) -> IntoIterVec<IntInterval> {
        self.intervals.into_iter()
    }

    // Adds an interval set to the set. The result may not be normalized.
    pub fn union(&mut self, iset: Self) {
        self.intervals.intervals.extend(iset.into_iter())
    }

    // Requires intervals be normalized.
    pub fn member(&self, value: usize) -> bool {
        let interval = IntInterval::new(value, value);
        let lb = self.intervals.intervals.lower_bound(&interval);
        if lb == 0 {
            return false;
        }
        self.intervals.intervals[lb - 1].end > value
    }

    pub fn singleton(&self) -> bool {
        if self.len() != 1 {
            return false;
        }
        let elt = unsafe { self.intervals.iter().next().unsafe_unwrap() };
        elt.begin + 1 == elt.end
    }

    // Sorts, collapses overlapping and adjacent interals, and sets count.
    pub fn normalize(&mut self) {
        let intervals = &mut self.intervals.intervals;
        intervals.sort();
        let n_intervals = intervals.len();
        let mut count = 0;
        let mut intervals_indexes_to_keep = HashSet::new();
        let mut i = 0;
        while i < n_intervals {
            let (intervals_0_i, intervals_ip1_end) = intervals.split_at_mut(i + 1);
            let inti = unsafe { intervals_0_i.get_unchecked_mut(i) };
            let inti_index = i;
            if inti.begin == inti.end {
                // Empty interval
                continue;
            }
            for j in (inti_index + 1)..n_intervals {
                let intj = unsafe { intervals_ip1_end.get_unchecked_mut(j - (inti_index + 1)) };
                if intj.begin > inti.end {
                    // No overlap between the two intervals
                    break;
                }
                if intj.end > inti.end {
                    inti.end = intj.end;
                }
                i += 1;
            }
            count += inti.end - inti.begin;
            intervals_indexes_to_keep.insert(inti_index);

            // Loop incrementation
            i += 1;
        }

        let mut index = 0;
        self.intervals
            .intervals
            .retain(|_| (intervals_indexes_to_keep.contains(&index), index += 1).0);
        self.intervals.set_count(count)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use anyhow::Result;

    #[test]
    fn test_normalize_interval_set() -> Result<()> {
        let mut interval_set = IntervalSet::default();

        assert!(!interval_set.singleton());
        assert!(!interval_set.member(3));

        interval_set.push(IntInterval::new(0, 5));

        interval_set.push(IntInterval::new(3, 10));

        interval_set.normalize();

        assert!(interval_set.member(3));

        {
            let mut ref_interval_set = IntervalSet::default();
            ref_interval_set.push(IntInterval::new(0, 10));
            ref_interval_set.intervals.set_count(10);

            assert_eq!(interval_set, ref_interval_set);
        }

        let mut interval_set_2 = IntervalSet::default();
        interval_set_2.push(IntInterval::new(12, 13));
        assert!(interval_set_2.singleton());

        interval_set.union(interval_set_2);
        interval_set.normalize();

        {
            let mut ref_interval_set = IntervalSet::default();
            ref_interval_set.push(IntInterval::new(0, 10));
            ref_interval_set.push(IntInterval::new(12, 13));
            ref_interval_set.intervals.set_count(11);

            assert_eq!(interval_set, ref_interval_set);
        }

        Ok(())
    }

    #[test]
    fn test_ord_intinterval() -> Result<()> {
        {
            let interval_1 = IntInterval::new(1, 4);
            let interval_2 = IntInterval::new(2, 3);
            assert_eq!(interval_1.cmp(&interval_2), Ordering::Less);
        }

        {
            let interval_1 = IntInterval::new(1, 4);
            let interval_2 = IntInterval::new(1, 4);
            assert_eq!(interval_1.cmp(&interval_2), Ordering::Equal);
        }

        {
            let interval_1 = IntInterval::new(3, 4);
            let interval_2 = IntInterval::new(2, 3);
            assert_eq!(interval_1.cmp(&interval_2), Ordering::Greater);
        }

        {
            let interval_1 = IntInterval::new(1, 4);
            let interval_2 = IntInterval::new(1, 3);
            assert_eq!(interval_1.cmp(&interval_2), Ordering::Less);
        }

        {
            let interval_1 = IntInterval::new(1, 4);
            let interval_2 = IntInterval::new(1, 5);
            assert_eq!(interval_1.cmp(&interval_2), Ordering::Greater);
        }

        Ok(())
    }
}