1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use std::sync::Arc;

use num_complex::Complex;
use num_traits::Zero;

use crate::algorithm::butterflies::{Butterfly1, Butterfly27, Butterfly3, Butterfly9};
use crate::array_utils;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{common::FftNum, twiddles, FftDirection};
use crate::{Direction, Fft, Length};

/// FFT algorithm optimized for power-of-three sizes
///
/// ~~~
/// // Computes a forward FFT of size 2187
/// use rustfft::algorithm::Radix3;
/// use rustfft::{Fft, FftDirection};
/// use rustfft::num_complex::Complex;
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 2187];
///
/// let fft = Radix3::new(2187, FftDirection::Forward);
/// fft.process(&mut buffer);
/// ~~~

pub struct Radix3<T> {
    twiddles: Box<[Complex<T>]>,
    butterfly3: Butterfly3<T>,

    base_fft: Arc<dyn Fft<T>>,
    base_len: usize,

    len: usize,
    direction: FftDirection,
}

impl<T: FftNum> Radix3<T> {
    /// Preallocates necessary arrays and precomputes necessary data to efficiently compute the power-of-three FFT
    pub fn new(len: usize, direction: FftDirection) -> Self {
        // Compute the total power of 3 for this length. IE, len = 3^exponent
        let exponent = compute_logarithm(len, 3).unwrap_or_else(|| {
            panic!(
                "Radix3 algorithm requires a power-of-three input size. Got {}",
                len
            )
        });

        // figure out which base length we're going to use
        let (base_len, base_fft) = match exponent {
            0 => (len, Arc::new(Butterfly1::new(direction)) as Arc<dyn Fft<T>>),
            1 => (len, Arc::new(Butterfly3::new(direction)) as Arc<dyn Fft<T>>),
            2 => (len, Arc::new(Butterfly9::new(direction)) as Arc<dyn Fft<T>>),
            _ => (27, Arc::new(Butterfly27::new(direction)) as Arc<dyn Fft<T>>),
        };

        // precompute the twiddle factors this algorithm will use.
        // we're doing the same precomputation of twiddle factors as the mixed radix algorithm where width=3 and height=len/3
        // but mixed radix only does one step and then calls itself recusrively, and this algorithm does every layer all the way down
        // so we're going to pack all the "layers" of twiddle factors into a single array, starting with the bottom layer and going up
        let mut twiddle_stride = len / (base_len * 3);
        let mut twiddle_factors = Vec::with_capacity(len * 2);
        while twiddle_stride > 0 {
            let num_rows = len / (twiddle_stride * 3);
            for i in 0..num_rows {
                for k in 1..3 {
                    let twiddle = twiddles::compute_twiddle(i * k * twiddle_stride, len, direction);
                    twiddle_factors.push(twiddle);
                }
            }
            twiddle_stride /= 3;
        }

        Self {
            twiddles: twiddle_factors.into_boxed_slice(),
            butterfly3: Butterfly3::new(direction),

            base_fft,
            base_len,

            len,
            direction,
        }
    }

    fn perform_fft_out_of_place(
        &self,
        signal: &[Complex<T>],
        spectrum: &mut [Complex<T>],
        _scratch: &mut [Complex<T>],
    ) {
        // copy the data into the spectrum vector
        if self.len() == self.base_len {
            spectrum.copy_from_slice(signal);
        } else {
            bitreversed_transpose(self.base_len, signal, spectrum);
        }

        // Base-level FFTs
        self.base_fft.process_with_scratch(spectrum, &mut []);

        // cross-FFTs
        let mut current_size = self.base_len * 3;
        let mut layer_twiddles: &[Complex<T>] = &self.twiddles;

        while current_size <= signal.len() {
            let num_rows = signal.len() / current_size;

            for i in 0..num_rows {
                unsafe {
                    butterfly_3(
                        &mut spectrum[i * current_size..],
                        layer_twiddles,
                        current_size / 3,
                        &self.butterfly3,
                    )
                }
            }

            //skip past all the twiddle factors used in this layer
            let twiddle_offset = (current_size * 2) / 3;
            layer_twiddles = &layer_twiddles[twiddle_offset..];

            current_size *= 3;
        }
    }
}
boilerplate_fft_oop!(Radix3, |this: &Radix3<_>| this.len);

// Preparing for radix 3 is similar to a transpose, where the column index is bit reversed.
// Use a lookup table to avoid repeating the slow bit reverse operations.
// Unrolling the outer loop by a factor 4 helps speed things up.
pub fn bitreversed_transpose<T: Copy>(height: usize, input: &[T], output: &mut [T]) {
    let width = input.len() / height;
    let third_width = width / 3;

    let rev_digits = compute_logarithm(width, 3).unwrap();

    // Let's make sure the arguments are ok
    assert!(input.len() == output.len());
    for x in 0..third_width {
        let x0 = 3 * x;
        let x1 = 3 * x + 1;
        let x2 = 3 * x + 2;

        let x_rev = [
            reverse_bits(x0, rev_digits),
            reverse_bits(x1, rev_digits),
            reverse_bits(x2, rev_digits),
        ];

        // Assert that the the bit reversed indices will not exceed the length of the output.
        // The highest index the loop reaches is: (x_rev[n] + 1)*height - 1
        // The last element of the data is at index: width*height - 1
        // Thus it is sufficient to assert that x_rev[n]<width.
        assert!(x_rev[0] < width && x_rev[1] < width && x_rev[2] < width);

        for y in 0..height {
            let input_index0 = x0 + y * width;
            let input_index1 = x1 + y * width;
            let input_index2 = x2 + y * width;
            let output_index0 = y + x_rev[0] * height;
            let output_index1 = y + x_rev[1] * height;
            let output_index2 = y + x_rev[2] * height;

            unsafe {
                let temp0 = *input.get_unchecked(input_index0);
                let temp1 = *input.get_unchecked(input_index1);
                let temp2 = *input.get_unchecked(input_index2);

                *output.get_unchecked_mut(output_index0) = temp0;
                *output.get_unchecked_mut(output_index1) = temp1;
                *output.get_unchecked_mut(output_index2) = temp2;
            }
        }
    }
}

// computes `n` such that `base ^ n == value`. Returns `None` if `value` is not a perfect power of `base`, otherwise returns `Some(n)`
fn compute_logarithm(value: usize, base: usize) -> Option<usize> {
    if value == 0 || base == 0 {
        return None;
    }

    let mut current_exponent = 0;
    let mut current_value = value;

    while current_value % base == 0 {
        current_exponent += 1;
        current_value /= base;
    }

    if current_value == 1 {
        Some(current_exponent)
    } else {
        None
    }
}

// Sort of like reversing bits in radix4. We're not actually reversing bits, but the algorithm is exactly the same.
// Radix4's bit reversal does divisions by 4, multiplications by 4, and modulo 4 - all of which are easily represented by bit manipulation.
// As a result, it can be thought of as a bit reversal. But really, the "bit reversal"-ness of it is a special case of a more general "remainder reversal"
// IE, it's repeatedly taking the remainder of dividing by N, and building a new number where those remainders are reversed.
// So this algorithm does all the things that bit reversal does, but replaces the multiplications by 4 with multiplications by 3, etc, and ends up with the same conceptual result as a bit reversal.
pub fn reverse_bits(value: usize, reversal_iters: usize) -> usize {
    let mut result: usize = 0;
    let mut value = value;
    for _ in 0..reversal_iters {
        result = (result * 3) + (value % 3);
        value /= 3;
    }
    result
}

unsafe fn butterfly_3<T: FftNum>(
    data: &mut [Complex<T>],
    twiddles: &[Complex<T>],
    num_ffts: usize,
    butterfly3: &Butterfly3<T>,
) {
    let mut idx = 0usize;
    let mut tw_idx = 0usize;
    let mut scratch = [Zero::zero(); 3];
    for _ in 0..num_ffts {
        scratch[0] = *data.get_unchecked(idx);
        scratch[1] = *data.get_unchecked(idx + 1 * num_ffts) * twiddles[tw_idx];
        scratch[2] = *data.get_unchecked(idx + 2 * num_ffts) * twiddles[tw_idx + 1];

        butterfly3.perform_fft_butterfly(&mut scratch);

        *data.get_unchecked_mut(idx) = scratch[0];
        *data.get_unchecked_mut(idx + 1 * num_ffts) = scratch[1];
        *data.get_unchecked_mut(idx + 2 * num_ffts) = scratch[2];

        tw_idx += 2;
        idx += 1;
    }
}

#[cfg(test)]
mod unit_tests {
    use super::*;
    use crate::test_utils::check_fft_algorithm;

    #[test]
    fn test_radix3() {
        for pow in 0..8 {
            let len = 3usize.pow(pow);
            test_3adix3_with_length(len, FftDirection::Forward);
            test_3adix3_with_length(len, FftDirection::Inverse);
        }
    }

    fn test_3adix3_with_length(len: usize, direction: FftDirection) {
        let fft = Radix3::new(len, direction);

        check_fft_algorithm::<f32>(&fft, len, direction);
    }
}