1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use std::sync::Arc;

use num_complex::Complex;
use strength_reduce::StrengthReducedUsize;
use transpose;

use common::{FFTnum, verify_length, verify_length_divisible};

use math_utils;
use array_utils;

use ::{Length, IsInverse, FFT};
use algorithm::butterflies::FFTButterfly;

/// Implementation of the [Good-Thomas Algorithm (AKA Prime Factor Algorithm)](https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm)
///
/// This algorithm factors a size n FFT into n1 * n2, where GCD(n1, n2) == 1
///
/// Conceptually, this algorithm is very similar to the Mixed-Radix FFT, except because GCD(n1, n2) == 1 we can do some
/// number theory trickery to reduce the number of floating-point multiplications and additions. Additionally, It can
/// be faster than Mixed-Radix at sizes below 10,000 or so.
///
/// ~~~
/// // Computes a forward FFT of size 1200, using the Good-Thomas Algorithm
/// use rustfft::algorithm::GoodThomasAlgorithm;
/// use rustfft::{FFT, FFTplanner};
/// use rustfft::num_complex::Complex;
/// use rustfft::num_traits::Zero;
///
/// let mut input:  Vec<Complex<f32>> = vec![Zero::zero(); 1200];
/// let mut output: Vec<Complex<f32>> = vec![Zero::zero(); 1200];
///
/// // we need to find an n1 and n2 such that n1 * n2 == 1200 and GCD(n1, n2) == 1
/// // n1 = 48 and n2 = 25 satisfies this
/// let mut planner = FFTplanner::new(false);
/// let inner_fft_n1 = planner.plan_fft(48);
/// let inner_fft_n2 = planner.plan_fft(25);
///
/// // the good-thomas FFT length will be inner_fft_n1.len() * inner_fft_n2.len() = 1200
/// let fft = GoodThomasAlgorithm::new(inner_fft_n1, inner_fft_n2);
/// fft.process(&mut input, &mut output);
/// ~~~
pub struct GoodThomasAlgorithm<T> {
    width: usize,
    width_size_fft: Arc<FFT<T>>,

    height: usize,
    height_size_fft: Arc<FFT<T>>,

    input_x_stride: usize,
    input_y_stride: usize,

    len: StrengthReducedUsize,
    inverse: bool,
}

impl<T: FFTnum> GoodThomasAlgorithm<T> {
    /// Creates a FFT instance which will process inputs/outputs of size `width_fft.len() * height_fft.len()`
    ///
    /// GCD(width_fft.len(), height_fft.len()) must be equal to 1
    pub fn new(width_fft: Arc<FFT<T>>, height_fft: Arc<FFT<T>>) -> Self {
        assert_eq!(
            width_fft.is_inverse(), height_fft.is_inverse(), 
            "width_fft and height_fft must both be inverse, or neither. got width inverse={}, height inverse={}",
            width_fft.is_inverse(), height_fft.is_inverse());

        let width = width_fft.len();
        let height = height_fft.len();
        let is_inverse = width_fft.is_inverse();

        // compute the nultiplicative inverse of width mod height and vice versa
        let (gcd, mut width_inverse, mut height_inverse) =
            math_utils::extended_euclidean_algorithm(width as i64, height as i64);
        assert!(gcd == 1,
                "Invalid input width and height to Good-Thomas Algorithm: ({},{}): Inputs must be coprime",
                width,
                height);

        // width_inverse or height_inverse might be negative, make it positive
        if width_inverse < 0 {
            width_inverse += height as i64;
        }
        if height_inverse < 0 {
            height_inverse += width as i64;
        }

        Self {
            width: width,
            width_size_fft: width_fft,

            height: height,
            height_size_fft: height_fft,

            input_x_stride: height_inverse as usize * height,
            input_y_stride: width_inverse as usize * width,

            len: StrengthReducedUsize::new(width * height),
            inverse: is_inverse,
        }
    }

    fn perform_fft(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        // copy the input into the output buffer
        for (y, row) in output.chunks_mut(self.width).enumerate() {
            let input_base = y * self.input_y_stride;
            for (x, output_cell) in row.iter_mut().enumerate() {
                let input_index = (input_base + x * self.input_x_stride) % self.len;
                *output_cell = input[input_index];
            }
        }

        // run FFTs of size `width`
        self.width_size_fft.process_multi(output, input);

        // transpose
        transpose::transpose(input, output, self.width, self.height);

        // run FFTs of size 'height'
        self.height_size_fft.process_multi(output, input);

        // copy to the output, using our output redordering mapping
        for (x, row) in input.chunks(self.height).enumerate() {
            let output_base = x * self.height;
            for (y, input_cell) in row.iter().enumerate() {
                let output_index = (output_base + y * self.width) % self.len;
                output[output_index] = *input_cell;
            }
        }
    }
}

impl<T: FFTnum> FFT<T> for GoodThomasAlgorithm<T> {
    fn process(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        verify_length(input, output, self.len());

        self.perform_fft(input, output);
    }
    fn process_multi(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        verify_length_divisible(input, output, self.len());

        for (in_chunk, out_chunk) in input.chunks_mut(self.len()).zip(output.chunks_mut(self.len())) {
            self.perform_fft(in_chunk, out_chunk);
        }
    }
}
impl<T> Length for GoodThomasAlgorithm<T> {
    #[inline(always)]
    fn len(&self) -> usize {
        self.width * self.height
    }
}
impl<T> IsInverse for GoodThomasAlgorithm<T> {
    #[inline(always)]
    fn is_inverse(&self) -> bool {
        self.inverse
    }
}




/// Implementation of the Good-Thomas Algorithm, specialized for the case where both inner FFTs are butterflies
///
/// This algorithm factors a size n FFT into n1 * n2, where GCD(n1, n2) == 1
///
/// Conceptually, this algorithm is very similar to the Mixed-Radix FFT, except because GCD(n1, n2) == 1 we can do some
/// number theory trickery to reduce the number of floating-point multiplications and additions. It typically performs
/// better than Mixed-Radix Double Butterfly Algorithm, especially at small sizes.
///
/// ~~~
/// // Computes a forward FFT of size 56, using the Good-Thoma Butterfly Algorithm
/// use std::sync::Arc;
/// use rustfft::algorithm::GoodThomasAlgorithmDoubleButterfly;
/// use rustfft::algorithm::butterflies::{Butterfly7, Butterfly8};
/// use rustfft::FFT;
/// use rustfft::num_complex::Complex;
/// use rustfft::num_traits::Zero;
///
/// let mut input:  Vec<Complex<f32>> = vec![Zero::zero(); 56];
/// let mut output: Vec<Complex<f32>> = vec![Zero::zero(); 56];
///
/// // we need to find an n1 and n2 such that n1 * n2 == 56 and GCD(n1, n2) == 1
/// // n1 = 7 and n2 = 8 satisfies this
/// let inner_fft_n1 = Arc::new(Butterfly7::new(false));
/// let inner_fft_n2 = Arc::new(Butterfly8::new(false));
///
/// // the good-thomas FFT length will be inner_fft_n1.len() * inner_fft_n2.len() = 56
/// let fft = GoodThomasAlgorithmDoubleButterfly::new(inner_fft_n1, inner_fft_n2);
/// fft.process(&mut input, &mut output);
/// ~~~
pub struct GoodThomasAlgorithmDoubleButterfly<T> {
    width: usize,
    width_size_fft: Arc<FFTButterfly<T>>,

    height: usize,
    height_size_fft: Arc<FFTButterfly<T>>,

    input_output_map: Box<[usize]>,

    inverse: bool,
}

impl<T: FFTnum> GoodThomasAlgorithmDoubleButterfly<T> {
    /// Creates a FFT instance which will process inputs/outputs of size `width_fft.len() * height_fft.len()`
    ///
    /// GCD(n1.len(), n2.len()) must be equal to 1
    pub fn new(width_fft: Arc<FFTButterfly<T>>, height_fft: Arc<FFTButterfly<T>>) -> Self {
        assert_eq!(
            width_fft.is_inverse(), height_fft.is_inverse(), 
            "n1_fft and height_fft must both be inverse, or neither. got width inverse={}, height inverse={}",
            width_fft.is_inverse(), height_fft.is_inverse());

        let width = width_fft.len();
        let height = height_fft.len();
        let len = width * height;

        // compute the nultiplicative inverse of n1 mod height and vice versa
        let (gcd, mut width_inverse, mut height_inverse) =
            math_utils::extended_euclidean_algorithm(width as i64, height as i64);
        assert!(gcd == 1,
                "Invalid input n1 and height to Good-Thomas Algorithm: ({},{}): Inputs must be coprime",
                width,
                height);

        // width_inverse or height_inverse might be negative, make it positive
        if width_inverse < 0 {
            width_inverse += height as i64;
        }
        if height_inverse < 0 {
            height_inverse += width as i64;
        }

        // NOTE: we are precomputing the input and output reordering indexes, because benchmarking shows that it's 10-20% faster
        // If we wanted to optimize for memory use or setup time instead of multiple-FFT speed, we could compute these on the fly in the perform_fft() method
        let input_iter = (0..len)
                .map(|i| (i % width, i / width))
                .map(|(x, y)| (x * height + y * width) % len);
        let output_iter = (0..len)
                .map(|i| (i % height, i / height))
                .map(|(y, x)| (x * height * height_inverse as usize + y * width * width_inverse as usize) % len);

        let input_output_map: Vec<usize> = input_iter.chain(output_iter).collect();

        GoodThomasAlgorithmDoubleButterfly {
            inverse: width_fft.is_inverse(),

            width: width,
            width_size_fft: width_fft,

            height: height,
            height_size_fft: height_fft,
            
            input_output_map: input_output_map.into_boxed_slice(),
        }
    }

    unsafe fn perform_fft(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {

        let (input_map, output_map) = self.input_output_map.split_at(self.len());

        // copy the input using our reordering mapping
        for (output_element, &input_index) in output.iter_mut().zip(input_map.iter()) {
            *output_element = input[input_index];
        }

        // run FFTs of size `width`
        self.width_size_fft.process_multi_inplace(output);

        // transpose
        array_utils::transpose_small(self.width, self.height, output, input);

        // run FFTs of size 'height'
        self.height_size_fft.process_multi_inplace(input);

        // copy to the output, using our output redordeing mapping
        for (input_element, &output_index) in input.iter().zip(output_map.iter()) {
            output[output_index] = *input_element;
        }
    }
}

impl<T: FFTnum> FFT<T> for GoodThomasAlgorithmDoubleButterfly<T> {
    fn process(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        verify_length(input, output, self.len());

        unsafe { self.perform_fft(input, output) };
    }
    fn process_multi(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        verify_length_divisible(input, output, self.len());

        for (in_chunk, out_chunk) in input.chunks_mut(self.len()).zip(output.chunks_mut(self.len())) {
             unsafe { self.perform_fft(in_chunk, out_chunk) };
        }
    }
}
impl<T> Length for GoodThomasAlgorithmDoubleButterfly<T> {
    #[inline(always)]
    fn len(&self) -> usize {
        self.width * self.height
    }
}
impl<T> IsInverse for GoodThomasAlgorithmDoubleButterfly<T> {
    #[inline(always)]
    fn is_inverse(&self) -> bool {
        self.inverse
    }
}


#[cfg(test)]
mod unit_tests {
    use super::*;
    use std::sync::Arc;
    use test_utils::{check_fft_algorithm, make_butterfly};
    use algorithm::DFT;
    use num_integer::gcd;

    #[test]
    fn test_good_thomas() {
        for width in 1..12 {
            for height in 1..12 {
                if gcd(width, height) == 1 {
                    test_good_thomas_with_lengths(width, height, false);
                    test_good_thomas_with_lengths(width, height, true);
                }
            }
        }
    }

    #[test]
    fn test_good_thomas_double_butterfly() {
        let butterfly_sizes = [2,3,4,5,6,7,8,16];
        for width in &butterfly_sizes {
            for height in &butterfly_sizes {
                if gcd(*width, *height) == 1 {
                    test_good_thomas_butterfly_with_lengths(*width, *height, false);
                    test_good_thomas_butterfly_with_lengths(*width, *height, true);
                }
            }
        }
    }

    fn test_good_thomas_with_lengths(width: usize, height: usize, inverse: bool) {
        let width_fft = Arc::new(DFT::new(width, inverse)) as Arc<FFT<f32>>;
        let height_fft = Arc::new(DFT::new(height, inverse)) as Arc<FFT<f32>>;

        let fft = GoodThomasAlgorithm::new(width_fft, height_fft);

        check_fft_algorithm(&fft, width * height, inverse);
    }

    fn test_good_thomas_butterfly_with_lengths(width: usize, height: usize, inverse: bool) {
        let width_fft = make_butterfly(width, inverse);
        let height_fft = make_butterfly(height, inverse);

        let fft = GoodThomasAlgorithmDoubleButterfly::new(width_fft, height_fft);

        check_fft_algorithm(&fft, width * height, inverse);
    }
}