1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use crate::{Arc, BTreeMap, Data, Mutex, Storage};
use std::cmp::min;

/// Slice of Data to be written to storage.
struct DataSlice {
    off: usize,
    len: usize,
    data: Data,
}

/// AtomicFile makes sure that database updates are all-or-nothing.
/// Keeps a map of outstanding writes which have not yet been written to the underlying file.
pub struct AtomicFile {
    /// The main underlying storage.
    pub stg: Box<dyn Storage>,
    /// Temporary storage for updates during commit.
    pub upd: Box<dyn Storage>,
    /// Map of existing outstanding writes. Note the key is the file address of the last byte written.
    map: Mutex<BTreeMap<u64, DataSlice>>,
}

impl AtomicFile {
    /// Construct a new AtomicFle. stg is the main underlying storage, upd is temporary storage for updates during commit.
    pub fn new(stg: Box<dyn Storage>, upd: Box<dyn Storage>) -> Self {
        let result = Self {
            map: Mutex::new(BTreeMap::new()),
            stg,
            upd,
        };
        result.init();
        result
    }

    /// Apply outstanding updates.
    fn init(&self) {
        let end = self.upd.read_u64(0);
        let size = self.upd.read_u64(8);
        if end == 0 {
            return;
        }
        assert!(end == self.upd.size());
        let mut pos = 16;
        while pos < end {
            let start = self.upd.read_u64(pos);
            pos += 8;
            let len = self.upd.read_u64(pos);
            pos += 8;
            let mut buf = vec![0; len as usize];
            self.upd.read(pos, &mut buf);
            pos += len;
            self.stg.write(start, &buf);
        }
        self.stg.commit(size);
        self.upd.commit(0);
    }

    /// Perform the specified phase ( 1 or 2 ) of a two-phase commit.
    pub fn commit_phase(&self, size: u64, phase: u8) {
        let mut map = self.map.lock().unwrap();
        if map.is_empty() {
            return;
        }

        if phase == 1 {
            // Write the updates to upd.
            // First set the end position to zero.
            self.upd.write_u64(0, 0);
            self.upd.write_u64(8, size);
            self.upd.commit(16); // Not clear if this is necessary.

            // Write the update records.
            let mut pos: u64 = 16;
            for (k, v) in map.iter() {
                let start = k + 1 - v.len as u64;
                let len = v.len as u64;
                self.upd.write_u64(pos, start);
                pos += 8;
                self.upd.write_u64(pos, len);
                pos += 8;
                self.upd.write(pos, &v.data[v.off..v.off + v.len]);
                pos += len;
            }
            self.upd.commit(pos); // Not clear if this is necessary.

            // Set the end position.
            self.upd.write_u64(0, pos);
            self.upd.write_u64(8, size);
            self.upd.commit(pos);
        } else {
            for (k, v) in map.iter() {
                let start = k + 1 - v.len as u64;
                self.stg.write(start, &v.data[v.off..v.off + v.len]);
            }
            map.clear();
            self.stg.commit(size);
            self.upd.commit(0);
        }
    }
}

impl Storage for AtomicFile {
    fn commit(&self, size: u64) {
        self.commit_phase(size, 1);
        self.commit_phase(size, 2);
    }

    fn size(&self) -> u64 {
        self.stg.size()
    }

    fn read(&self, start: u64, data: &mut [u8]) {
        let mut todo: usize = data.len();
        if todo == 0 {
            return;
        }
        let mut done: usize = 0;

        let map = self.map.lock().unwrap();
        for (&k, v) in map.range(start..) {
            let estart = k + 1 - v.len as u64;
            if estart > start + done as u64 {
                let lim = (estart - (start + done as u64)) as usize;
                let amount = min(todo, lim) as usize;
                self.stg
                    .read(start + done as u64, &mut data[done..done + amount]);
                done += amount;
                todo -= amount;
            }
            if estart > start + data.len() as u64 {
                break;
            } else {
                let skip = (start + done as u64 - estart) as usize;
                let amount = min(todo, v.len - skip);
                data[done..done + amount]
                    .copy_from_slice(&v.data[v.off + skip..v.off + skip + amount]);
                done += amount;
                todo -= amount;
            }
            if todo == 0 {
                break;
            }
        }
        if todo > 0 {
            self.stg
                .read(start + done as u64, &mut data[done..done + todo]);
        }
    }

    fn write_data(&self, start: u64, data: Data, off: usize, len: usize) {
        if len == 0 {
            return;
        }

        // Existing writes which overlap with new write need to be trimmed or removed.
        let mut remove = Vec::new();
        let mut add = Vec::new();
        let end = start + len as u64;

        let mut map = self.map.lock().unwrap();
        for (&k, v) in map.range_mut(start..) {
            let eend = k + 1; // end of existing write.
            let estart = eend - v.len as u64; // start of existing write.

            // (a) New write ends before existing write.
            if end <= estart {
                break;
            }
            // (b) New write subsumes existing write entirely, remove existing write.
            else if start <= estart && end >= eend {
                remove.push(eend - 1);
            }
            // (c) New write starts before existing write, but doesn't subsume it. Trim existing write.
            else if start <= estart {
                let trim = (end - estart) as usize;
                v.len -= trim;
                v.off += trim;
            }
            // (d) New write starts in middle of existing write, ends before end of existing write...
            // .. put start of existing write in add list, trim existing write.
            else if start > estart && end < eend {
                let remain = (start - estart) as usize;
                add.push((estart, v.data.clone(), v.off, remain));

                let trim = (end - estart) as usize;
                v.len -= trim;
                v.off += trim;
            }
            // (e) New write starts in middle of existing write, ends after existing write...
            // ... put start of existing write in add list, remove existing write,
            else {
                let remain = (start - estart) as usize;
                add.push((estart, v.data.clone(), v.off, remain));

                remove.push(eend - 1);
            }
        }
        for k in remove {
            map.remove(&k);
        }
        for (start, data, off, len) in add {
            map.insert(start + len as u64 - 1, DataSlice { data, off, len });
        }

        map.insert(start + len as u64 - 1, DataSlice { data, off, len });
    }

    fn write(&self, start: u64, data: &[u8]) {
        let len = data.len();
        let d = Arc::new(data.to_vec());
        self.write_data(start, d, 0, len);
    }
}

#[test]
pub fn test() {
    use crate::stg::MemFile;
    use rand::Rng;
    /* Idea of test is to check AtomicFile and MemFile behave the same */

    let mut rng = rand::thread_rng();

    for _ in 0..100 {
        let s0 = Box::new(MemFile::default());
        let s1 = Box::new(MemFile::default());
        let s2 = AtomicFile::new(s0, s1);
        let s3 = MemFile::default();

        for _ in 0..1000 {
            let off: usize = rng.gen::<usize>() % 100;
            let mut len = 1 + rng.gen::<usize>() % 20;
            let w: bool = rng.gen();
            if w {
                let mut bytes = Vec::new();
                while len > 0 {
                    len -= 1;
                    let b: u8 = rng.gen::<u8>();
                    bytes.push(b);
                }
                s2.write(off as u64, &bytes);
                s3.write(off as u64, &bytes);
            } else {
                let mut b2 = vec![0; len];
                let mut b3 = vec![0; len];
                s2.read(off as u64, &mut b2);
                s3.read(off as u64, &mut b3);
                assert!(b2 == b3);
            }
        }
    }
}