1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#[inline]
pub fn write_to_vec(vec: &mut Vec<u8>, byte: u8) {
    vec.push(byte);
}

#[cfg(target_pointer_width = "32")]
const USIZE_LEB128_SIZE: usize = 5;
#[cfg(target_pointer_width = "64")]
const USIZE_LEB128_SIZE: usize = 10;

macro_rules! leb128_size {
    (u16) => (3);
    (u32) => (5);
    (u64) => (10);
    (u128) => (19);
    (usize) => (USIZE_LEB128_SIZE);
}

macro_rules! impl_write_unsigned_leb128 {
    ($fn_name:ident, $int_ty:ident) => (
        #[inline]
        pub fn $fn_name(out: &mut Vec<u8>, mut value: $int_ty) {
            for _ in 0 .. leb128_size!($int_ty) {
                let mut byte = (value & 0x7F) as u8;
                value >>= 7;
                if value != 0 {
                    byte |= 0x80;
                }

                write_to_vec(out, byte);

                if value == 0 {
                    break;
                }
            }
        }
    )
}

impl_write_unsigned_leb128!(write_u16_leb128, u16);
impl_write_unsigned_leb128!(write_u32_leb128, u32);
impl_write_unsigned_leb128!(write_u64_leb128, u64);
impl_write_unsigned_leb128!(write_u128_leb128, u128);
impl_write_unsigned_leb128!(write_usize_leb128, usize);


macro_rules! impl_read_unsigned_leb128 {
    ($fn_name:ident, $int_ty:ident) => (
        #[inline]
        pub fn $fn_name(slice: &[u8]) -> ($int_ty, usize) {
            let mut result: $int_ty = 0;
            let mut shift = 0;
            let mut position = 0;

            for _ in 0 .. leb128_size!($int_ty) {
                let byte = unsafe {
                    *slice.get_unchecked(position)
                };
                position += 1;
                result |= ((byte & 0x7F) as $int_ty) << shift;
                if (byte & 0x80) == 0 {
                    break;
                }
                shift += 7;
            }

            // Do a single bounds check at the end instead of for every byte.
            assert!(position <= slice.len());

            (result, position)
        }
    )
}

impl_read_unsigned_leb128!(read_u16_leb128, u16);
impl_read_unsigned_leb128!(read_u32_leb128, u32);
impl_read_unsigned_leb128!(read_u64_leb128, u64);
impl_read_unsigned_leb128!(read_u128_leb128, u128);
impl_read_unsigned_leb128!(read_usize_leb128, usize);



#[inline]
/// encodes an integer using signed leb128 encoding and stores
/// the result using a callback function.
///
/// The callback `write` is called once for each position
/// that is to be written to with the byte to be encoded
/// at that position.
pub fn write_signed_leb128_to<W>(mut value: i128, mut write: W)
    where W: FnMut(u8)
{
    loop {
        let mut byte = (value as u8) & 0x7f;
        value >>= 7;
        let more = !(((value == 0) && ((byte & 0x40) == 0)) ||
                     ((value == -1) && ((byte & 0x40) != 0)));

        if more {
            byte |= 0x80; // Mark this byte to show that more bytes will follow.
        }

        write(byte);

        if !more {
            break;
        }
    }
}

#[inline]
pub fn write_signed_leb128(out: &mut Vec<u8>, value: i128) {
    write_signed_leb128_to(value, |v| write_to_vec(out, v))
}

#[inline]
pub fn read_signed_leb128(data: &[u8], start_position: usize) -> (i128, usize) {
    let mut result = 0;
    let mut shift = 0;
    let mut position = start_position;
    let mut byte;

    loop {
        byte = data[position];
        position += 1;
        result |= ((byte & 0x7F) as i128) << shift;
        shift += 7;

        if (byte & 0x80) == 0 {
            break;
        }
    }

    if (shift < 64) && ((byte & 0x40) != 0) {
        // sign extend
        result |= -(1 << shift);
    }

    (result, position - start_position)
}

macro_rules! impl_test_unsigned_leb128 {
    ($test_name:ident, $write_fn_name:ident, $read_fn_name:ident, $int_ty:ident) => (
        #[test]
        fn $test_name() {
            let mut stream = Vec::new();

            for x in 0..62 {
                $write_fn_name(&mut stream, (3u64 << x) as $int_ty);
            }

            let mut position = 0;
            for x in 0..62 {
                let expected = (3u64 << x) as $int_ty;
                let (actual, bytes_read) = $read_fn_name(&stream[position ..]);
                assert_eq!(expected, actual);
                position += bytes_read;
            }
            assert_eq!(stream.len(), position);
        }
    )
}

impl_test_unsigned_leb128!(test_u16_leb128, write_u16_leb128, read_u16_leb128, u16);
impl_test_unsigned_leb128!(test_u32_leb128, write_u32_leb128, read_u32_leb128, u32);
impl_test_unsigned_leb128!(test_u64_leb128, write_u64_leb128, read_u64_leb128, u64);
impl_test_unsigned_leb128!(test_u128_leb128, write_u128_leb128, read_u128_leb128, u128);
impl_test_unsigned_leb128!(test_usize_leb128, write_usize_leb128, read_usize_leb128, usize);

#[test]
fn test_signed_leb128() {
    let values: Vec<_> = (-500..500).map(|i| i * 0x12345789ABCDEF).collect();
    let mut stream = Vec::new();
    for &x in &values {
        write_signed_leb128(&mut stream, x);
    }
    let mut pos = 0;
    for &x in &values {
        let (value, bytes_read) = read_signed_leb128(&mut stream, pos);
        pos += bytes_read;
        assert_eq!(x, value);
    }
    assert_eq!(pos, stream.len());
}