1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
use crate::prelude::*;
use num_traits::pow::Pow;

const TWO: Decimal = Decimal::from_parts_raw(2, 0, 0, 0);
const PI: Decimal = Decimal::from_parts_raw(1102470953, 185874565, 1703060790, 1835008);
const EXP_TOLERANCE: Decimal = Decimal::from_parts(2, 0, 0, false, 7);

// Table representing {index}!
const FACTORIAL: [Decimal; 28] = [
    Decimal::from_parts(1, 0, 0, false, 0),
    Decimal::from_parts(1, 0, 0, false, 0),
    Decimal::from_parts(2, 0, 0, false, 0),
    Decimal::from_parts(6, 0, 0, false, 0),
    Decimal::from_parts(24, 0, 0, false, 0),
    // 5!
    Decimal::from_parts(120, 0, 0, false, 0),
    Decimal::from_parts(720, 0, 0, false, 0),
    Decimal::from_parts(5040, 0, 0, false, 0),
    Decimal::from_parts(40320, 0, 0, false, 0),
    Decimal::from_parts(362880, 0, 0, false, 0),
    // 10!
    Decimal::from_parts(3628800, 0, 0, false, 0),
    Decimal::from_parts(39916800, 0, 0, false, 0),
    Decimal::from_parts(479001600, 0, 0, false, 0),
    Decimal::from_parts(1932053504, 1, 0, false, 0),
    Decimal::from_parts(1278945280, 20, 0, false, 0),
    // 15!
    Decimal::from_parts(2004310016, 304, 0, false, 0),
    Decimal::from_parts(2004189184, 4871, 0, false, 0),
    Decimal::from_parts(4006445056, 82814, 0, false, 0),
    Decimal::from_parts(3396534272, 1490668, 0, false, 0),
    Decimal::from_parts(109641728, 28322707, 0, false, 0),
    // 20!
    Decimal::from_parts(2192834560, 566454140, 0, false, 0),
    Decimal::from_parts(3099852800, 3305602358, 2, false, 0),
    Decimal::from_parts(3772252160, 4003775155, 60, false, 0),
    Decimal::from_parts(862453760, 1892515369, 1401, false, 0),
    Decimal::from_parts(3519021056, 2470695900, 33634, false, 0),
    // 25!
    Decimal::from_parts(2076180480, 1637855376, 840864, false, 0),
    Decimal::from_parts(2441084928, 3929534124, 21862473, false, 0),
    Decimal::from_parts(1484783616, 3018206259, 590286795, false, 0),
];

/// Trait exposing various mathematical operations that can be applied using a Decimal. This is only
/// present when the `maths` feature has been enabled.
pub trait MathematicalOps {
    /// The estimated exponential function, e<sup>x</sup>. Stops calculating when it is within
    /// tolerance of roughly `0.0000002`.
    fn exp(&self) -> Decimal;

    /// The estimated exponential function, e<sup>x</sup> using the `tolerance` provided as a hint
    /// as to when to stop calculating. A larger tolerance will cause the number to stop calculating
    /// sooner at the potential cost of a slightly less accurate result.
    fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal;

    /// Raise self to the given integer exponent: x<sup>y</sup>
    fn powi(&self, exp: i64) -> Decimal;

    /// Raise self to the given integer exponent x<sup>y</sup> returning `None` on overflow.
    fn checked_powi(&self, exp: i64) -> Option<Decimal>;

    /// Raise self to the given unsigned integer exponent: x<sup>y</sup>
    fn powu(&self, exp: u64) -> Decimal;

    /// Raise self to the given unsigned integer exponent x<sup>y</sup> returning `None` on overflow.
    fn checked_powu(&self, exp: u64) -> Option<Decimal>;

    /// Raise self to the given floating point exponent: x<sup>y</sup>
    fn powf(&self, exp: f64) -> Decimal;

    /// Raise self to the given floating point exponent x<sup>y</sup> returning `None` on overflow.
    fn checked_powf(&self, exp: f64) -> Option<Decimal>;

    /// Raise self to the given Decimal exponent: x<sup>y</sup>. If `exp` is not whole then the approximation
    /// e<sup>y*ln(x)</sup> of is used.
    fn powd(&self, exp: Decimal) -> Decimal;

    /// Raise self to the given Decimal exponent x<sup>y</sup> returning `None` on overflow.
    /// If `exp` is not whole then the approximation e<sup>y*ln(x)</sup> of is used.
    fn checked_powd(&self, exp: Decimal) -> Option<Decimal>;

    /// The square root of a Decimal. Uses a standard Babylonian method.
    fn sqrt(&self) -> Option<Decimal>;

    /// The natural logarithm for a Decimal. Uses a [fast estimation algorithm](https://en.wikipedia.org/wiki/Natural_logarithm#High_precision)
    /// This is more accurate on larger numbers and less on numbers less than 1.
    fn ln(&self) -> Decimal;

    /// Abramowitz Approximation of Error Function from [wikipedia](https://en.wikipedia.org/wiki/Error_function#Numerical_approximations)
    fn erf(&self) -> Decimal;

    /// The Cumulative distribution function for a Normal distribution
    fn norm_cdf(&self) -> Decimal;

    /// The Probability density function for a Normal distribution
    fn norm_pdf(&self) -> Decimal;
}

impl MathematicalOps for Decimal {
    fn exp(&self) -> Decimal {
        self.exp_with_tolerance(EXP_TOLERANCE)
    }

    #[inline]
    fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal {
        if self.is_zero() {
            return Decimal::ONE;
        }

        let mut term = *self;
        let mut result = self + Decimal::ONE;

        for factorial in FACTORIAL.iter().skip(2) {
            term = self * term;
            let next = result + (term / factorial);
            let diff = (next - result).abs();
            result = next;
            if diff <= tolerance {
                break;
            }
        }

        result
    }

    fn powi(&self, exp: i64) -> Decimal {
        match self.checked_powi(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powi(&self, exp: i64) -> Option<Decimal> {
        // For negative exponents we change x^-y into 1 / x^y.
        // Otherwise, we calculate a standard unsigned exponent
        if exp >= 0 {
            return self.checked_powu(exp as u64);
        }

        // Get the unsigned exponent
        let exp = exp.unsigned_abs();
        let pow = match self.checked_powu(exp) {
            Some(v) => v,
            None => return None,
        };
        Decimal::ONE.checked_div(pow)
    }

    fn powu(&self, exp: u64) -> Decimal {
        match self.checked_powu(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powu(&self, exp: u64) -> Option<Decimal> {
        match exp {
            0 => Some(Decimal::ONE),
            1 => Some(*self),
            2 => self.checked_mul(*self),
            _ => {
                // Get the squared value
                let squared = match self.checked_mul(*self) {
                    Some(s) => s,
                    None => return None,
                };
                // Square self once and make an infinite sized iterator of the square.
                let iter = core::iter::repeat(squared);

                // We then take half of the exponent to create a finite iterator and then multiply those together.
                let mut product = Decimal::ONE;
                for x in iter.take((exp >> 1) as usize) {
                    match product.checked_mul(x) {
                        Some(r) => product = r,
                        None => return None,
                    };
                }

                // If the exponent is odd we still need to multiply once more
                if exp & 0x1 > 0 {
                    match self.checked_mul(product) {
                        Some(p) => product = p,
                        None => return None,
                    }
                }
                product.normalize_assign();
                Some(product)
            }
        }
    }

    fn powf(&self, exp: f64) -> Decimal {
        match self.checked_powf(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powf(&self, exp: f64) -> Option<Decimal> {
        let exp = match Decimal::from_f64(exp) {
            Some(f) => f,
            None => return None,
        };
        self.checked_powd(exp)
    }

    fn powd(&self, exp: Decimal) -> Decimal {
        match self.checked_powd(exp) {
            Some(result) => result,
            None => panic!("Pow overflowed"),
        }
    }

    fn checked_powd(&self, exp: Decimal) -> Option<Decimal> {
        if exp.is_zero() {
            return Some(Decimal::ONE);
        }
        if self.is_zero() {
            return Some(Decimal::ZERO);
        }
        if self.is_one() {
            return Some(Decimal::ONE);
        }
        if exp.is_one() {
            return Some(*self);
        }

        // If the scale is 0 then it's a trivial calculation
        let exp = exp.normalize();
        if exp.scale() == 0 {
            if exp.mid() != 0 || exp.hi() != 0 {
                // Exponent way too big
                return None;
            }

            if exp.is_sign_negative() {
                return self.checked_powi(-(exp.lo() as i64));
            } else {
                return self.checked_powu(exp.lo() as u64);
            }
        }

        // We do some approximations since we've got a decimal exponent.
        // For positive bases: a^b = exp(b*ln(a))
        let negative = self.is_sign_negative();
        let e = match self.abs().ln().checked_mul(exp) {
            Some(e) => e,
            None => return None,
        };
        let mut result = e.exp();
        result.set_sign_negative(negative);
        Some(result)
    }

    /// The square root of a Decimal. Uses a standard Babylonian method.
    fn sqrt(&self) -> Option<Decimal> {
        if self.is_sign_negative() {
            return None;
        }

        if self.is_zero() {
            return Some(Decimal::ZERO);
        }

        // Start with an arbitrary number as the first guess
        let mut result = self / TWO;
        // Too small to represent, so we start with self
        // Future iterations could actually avoid using a decimal altogether and use a buffered
        // vector, only combining back into a decimal on return
        if result.is_zero() {
            result = *self;
        }
        let mut last = result + Decimal::ONE;

        // Keep going while the difference is larger than the tolerance
        let mut circuit_breaker = 0;
        while last != result {
            circuit_breaker += 1;
            assert!(circuit_breaker < 1000, "geo mean circuit breaker");

            last = result;
            result = (result + self / result) / TWO;
        }

        Some(result)
    }

    /// The natural logarithm for a Decimal. Uses a [fast estimation algorithm](https://en.wikipedia.org/wiki/Natural_logarithm#High_precision)
    /// This is more accurate on larger numbers and less on numbers less than 1.
    fn ln(&self) -> Decimal {
        const C4: Decimal = Decimal::from_parts_raw(4, 0, 0, 0);
        const C256: Decimal = Decimal::from_parts_raw(256, 0, 0, 0);
        const EIGHT_LN2: Decimal = Decimal::from_parts(1406348788, 262764557, 3006046716, false, 28);

        if self.is_sign_positive() {
            if *self == Decimal::ONE {
                Decimal::ZERO
            } else {
                let rhs = C4 / (self * C256);
                let arith_geo_mean = arithmetic_geo_mean_of_2(&Decimal::ONE, &rhs);
                (PI / (arith_geo_mean * TWO)) - EIGHT_LN2
            }
        } else {
            Decimal::ZERO
        }
    }

    /// Abramowitz Approximation of Error Function from [wikipedia](https://en.wikipedia.org/wiki/Error_function#Numerical_approximations)
    fn erf(&self) -> Decimal {
        if self.is_sign_positive() {
            let one = &Decimal::ONE;

            let xa1 = self * Decimal::from_parts(705230784, 0, 0, false, 10);
            let xa2 = self.powi(2) * Decimal::from_parts(422820123, 0, 0, false, 10);
            let xa3 = self.powi(3) * Decimal::from_parts(92705272, 0, 0, false, 10);
            let xa4 = self.powi(4) * Decimal::from_parts(1520143, 0, 0, false, 10);
            let xa5 = self.powi(5) * Decimal::from_parts(2765672, 0, 0, false, 10);
            let xa6 = self.powi(6) * Decimal::from_parts(430638, 0, 0, false, 10);

            let sum = one + xa1 + xa2 + xa3 + xa4 + xa5 + xa6;
            one - (one / sum.powi(16))
        } else {
            -self.abs().erf()
        }
    }

    /// The Cumulative distribution function for a Normal distribution
    fn norm_cdf(&self) -> Decimal {
        (Decimal::ONE + (self / Decimal::from_parts(2318911239, 3292722, 0, false, 16)).erf()) / TWO
    }

    /// The Probability density function for a Normal distribution
    fn norm_pdf(&self) -> Decimal {
        let sqrt2pi = Decimal::from_parts_raw(2133383024, 2079885984, 1358845910, 1835008);
        (-self.powi(2) / TWO).exp() / sqrt2pi
    }
}

impl Pow<Decimal> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: Decimal) -> Self::Output {
        MathematicalOps::powd(&self, rhs)
    }
}

impl Pow<u64> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: u64) -> Self::Output {
        MathematicalOps::powu(&self, rhs)
    }
}

impl Pow<i64> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: i64) -> Self::Output {
        MathematicalOps::powi(&self, rhs)
    }
}

impl Pow<f64> for Decimal {
    type Output = Decimal;

    fn pow(self, rhs: f64) -> Self::Output {
        MathematicalOps::powf(&self, rhs)
    }
}

/// Returns the convergence of both the arithmetic and geometric mean.
/// Used internally.
fn arithmetic_geo_mean_of_2(a: &Decimal, b: &Decimal) -> Decimal {
    const TOLERANCE: Decimal = Decimal::from_parts(5, 0, 0, false, 7);
    let diff = (a - b).abs();

    if diff < TOLERANCE {
        *a
    } else {
        arithmetic_geo_mean_of_2(&mean_of_2(a, b), &geo_mean_of_2(a, b))
    }
}

/// The Arithmetic mean. Used internally.
fn mean_of_2(a: &Decimal, b: &Decimal) -> Decimal {
    (a + b) / TWO
}

/// The geometric mean. Used internally.
fn geo_mean_of_2(a: &Decimal, b: &Decimal) -> Decimal {
    // TODO: This can overflow unnecessarily. We should keep this in an internal representation until
    //       absolutely necessary to convert back.
    (a * b).sqrt().unwrap()
}

#[cfg(test)]
mod test {
    use super::*;

    use std::str::FromStr;

    #[test]
    fn factorials() {
        assert_eq!("1", FACTORIAL[0].to_string(), "0!");
        assert_eq!("1", FACTORIAL[1].to_string(), "1!");
        assert_eq!("2", FACTORIAL[2].to_string(), "2!");
        assert_eq!("6", FACTORIAL[3].to_string(), "3!");
        assert_eq!("24", FACTORIAL[4].to_string(), "4!");
        assert_eq!("120", FACTORIAL[5].to_string(), "5!");
        assert_eq!("720", FACTORIAL[6].to_string(), "6!");
        assert_eq!("5040", FACTORIAL[7].to_string(), "7!");
        assert_eq!("40320", FACTORIAL[8].to_string(), "8!");
        assert_eq!("362880", FACTORIAL[9].to_string(), "9!");
        assert_eq!("3628800", FACTORIAL[10].to_string(), "10!");
        assert_eq!("39916800", FACTORIAL[11].to_string(), "11!");
        assert_eq!("479001600", FACTORIAL[12].to_string(), "12!");
        assert_eq!("6227020800", FACTORIAL[13].to_string(), "13!");
        assert_eq!("87178291200", FACTORIAL[14].to_string(), "14!");
        assert_eq!("1307674368000", FACTORIAL[15].to_string(), "15!");
        assert_eq!("20922789888000", FACTORIAL[16].to_string(), "16!");
        assert_eq!("355687428096000", FACTORIAL[17].to_string(), "17!");
        assert_eq!("6402373705728000", FACTORIAL[18].to_string(), "18!");
        assert_eq!("121645100408832000", FACTORIAL[19].to_string(), "19!");
        assert_eq!("2432902008176640000", FACTORIAL[20].to_string(), "20!");
        assert_eq!("51090942171709440000", FACTORIAL[21].to_string(), "21!");
        assert_eq!("1124000727777607680000", FACTORIAL[22].to_string(), "22!");
        assert_eq!("25852016738884976640000", FACTORIAL[23].to_string(), "23!");
        assert_eq!("620448401733239439360000", FACTORIAL[24].to_string(), "24!");
        assert_eq!("15511210043330985984000000", FACTORIAL[25].to_string(), "25!");
        assert_eq!("403291461126605635584000000", FACTORIAL[26].to_string(), "26!");
        assert_eq!("10888869450418352160768000000", FACTORIAL[27].to_string(), "27!");
    }

    #[test]
    fn test_geo_mean_of_2() {
        let test_cases = &[
            (
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
            ),
            (
                Decimal::from_str("4").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("3.4641016151377545870548926830").unwrap(),
            ),
            (
                Decimal::from_str("12").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("6.000000000000000000000000000").unwrap(),
            ),
        ];

        for case in test_cases {
            assert_eq!(case.2, geo_mean_of_2(&case.0, &case.1));
        }
    }

    #[test]
    fn test_mean_of_2() {
        let test_cases = &[
            (
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
            ),
            (
                Decimal::from_str("4").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("3.5").unwrap(),
            ),
            (
                Decimal::from_str("12").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("7.5").unwrap(),
            ),
        ];

        for case in test_cases {
            assert_eq!(case.2, mean_of_2(&case.0, &case.1));
        }
    }
}