1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Encryption logic for rust-elgamal.
// Copyright 2021 Eleanor McMurtry
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use core::fmt::{Formatter, Debug};

use curve25519_dalek::constants::{RISTRETTO_BASEPOINT_TABLE, RISTRETTO_BASEPOINT_POINT};
use curve25519_dalek::ristretto::RistrettoPoint;
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::MultiscalarMul;
use rand_core::{RngCore, CryptoRng};

#[cfg(feature = "enable-serde")]
use serde::{Serialize, Deserialize};

use crate::{Ciphertext, DecryptionKey};
use crate::util::random_scalar;

/// An ElGamal encryption key (also called a public key in other implementations).
/// To create a new encryption key, see [DecryptionKey](crate::decrypt::DecryptionKey).
#[derive(Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct EncryptionKey(pub(crate) RistrettoPoint);

impl EncryptionKey {
    /// Encrypt `mG` with a randomly-generated blinding factor, where `G` is the group generator.
    ///
    /// This is computationally intensive to decrypt to the original scalar, and not relevant to
    /// the majority of users. This function takes advantage of a fast implementation for multiple
    /// multiplications in `curve25519-dalek`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::rngs::StdRng;
    /// use rand::SeedableRng;
    /// use rust_elgamal::{DecryptionKey, GENERATOR_TABLE, Scalar};
    ///
    /// let mut rng = StdRng::from_entropy();
    /// let dec_key = DecryptionKey::new(&mut rng);
    /// let enc_key = dec_key.encryption_key();
    ///
    /// let m = Scalar::from(5u32);
    /// let encrypted = enc_key.exp_encrypt(m, &mut rng);
    /// ```
    pub fn exp_encrypt<R: RngCore + CryptoRng>(&self, m: Scalar, mut rng: R) -> Ciphertext {
        self.exp_encrypt_with(m, random_scalar(&mut rng))
    }

    /// Encrypt `mG` with the blinding factor `r`, where `G` is the group generator.
    ///
    /// This is computationally intensive to decrypt to the original scalar, and not relevant to
    /// the majority of users. This function takes advantage of a fast implementation for multiple
    /// multiplications in `curve25519-dalek`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::rngs::StdRng;
    /// use rand::SeedableRng;
    /// use rust_elgamal::{DecryptionKey, GENERATOR_TABLE, Scalar};
    ///
    /// let mut rng = StdRng::from_entropy();
    /// let dec_key = DecryptionKey::new(&mut rng);
    /// let enc_key = dec_key.encryption_key();
    ///
    /// let m = Scalar::from(5u32);
    /// let r = Scalar::from(10u32);
    /// let encrypted = enc_key.exp_encrypt_with(m, r);
    /// ```
    pub fn exp_encrypt_with(&self, m: Scalar, r: Scalar) -> Ciphertext {
        let c1 = &r * &RISTRETTO_BASEPOINT_TABLE;
        // mG + rY
        let c2 = RistrettoPoint::multiscalar_mul(&[m, r], &[RISTRETTO_BASEPOINT_POINT, self.0]);
        Ciphertext(c1, c2)
    }

    /// Encrypt the curve point `m` with a randomly-generated blinding factor.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::rngs::StdRng;
    /// use rand::SeedableRng;
    /// use rust_elgamal::{DecryptionKey, GENERATOR_TABLE, Scalar};
    ///
    /// let mut rng = StdRng::from_entropy();
    /// let dec_key = DecryptionKey::new(&mut rng);
    /// let enc_key = dec_key.encryption_key();
    ///
    /// let m = &Scalar::from(5u32) * &GENERATOR_TABLE;
    /// let encrypted = enc_key.encrypt(m, &mut rng);
    /// ```
    pub fn encrypt<R: RngCore + CryptoRng>(&self, m: RistrettoPoint, mut rng: R) -> Ciphertext {
        self.encrypt_with(m, random_scalar(&mut rng))
    }

    /// Encrypt the curve point `m` with the blinding factor `r`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::rngs::StdRng;
    /// use rand::SeedableRng;
    /// use rust_elgamal::{DecryptionKey, GENERATOR_TABLE, Scalar};
    ///
    /// let mut rng = StdRng::from_entropy();
    /// let dec_key = DecryptionKey::new(&mut rng);
    /// let enc_key = dec_key.encryption_key();
    ///
    /// let m = &Scalar::from(5u32) * &GENERATOR_TABLE;
    /// let r = Scalar::from(10u32);
    /// let encrypted = enc_key.encrypt_with(m, r);
    /// ```
    pub fn encrypt_with(&self, m: RistrettoPoint, r: Scalar) -> Ciphertext {
        let c1 = &r * &RISTRETTO_BASEPOINT_TABLE;
        let c2 = m + r * &self.0;
        Ciphertext(c1, c2)
    }

    /// Re-randomise the ciphertext `ct` with a randomly-generated blinding factor.
    /// This will generate a new encryption of the same curve point.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::rngs::StdRng;
    /// use rand::SeedableRng;
    /// use rust_elgamal::{DecryptionKey, GENERATOR_TABLE, Scalar};
    ///
    /// let mut rng = StdRng::from_entropy();
    /// let dec_key = DecryptionKey::new(&mut rng);
    /// let enc_key = dec_key.encryption_key();
    ///
    /// let m = &Scalar::from(5u32) * &GENERATOR_TABLE;
    /// let ct1 = enc_key.encrypt(m, &mut rng);
    /// let ct2 = enc_key.rerandomise(ct1, &mut rng);
    /// assert_eq!(dec_key.decrypt(ct1), dec_key.decrypt(ct2));
    /// ```
    pub fn rerandomise<R: RngCore + CryptoRng>(&self, ct: Ciphertext, mut rng: R) -> Ciphertext {
        self.rerandomise_with(ct, random_scalar(&mut rng))
    }


    /// Re-randomise the ciphertext `ct` with the provided blinding factor.
    /// This will generate a new encryption of the same curve point.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::rngs::StdRng;
    /// use rand::SeedableRng;
    /// use rust_elgamal::{DecryptionKey, GENERATOR_TABLE, Scalar};
    ///
    /// let mut rng = StdRng::from_entropy();
    /// let dec_key = DecryptionKey::new(&mut rng);
    /// let enc_key = dec_key.encryption_key();
    ///
    /// let m = &Scalar::from(5u32) * &GENERATOR_TABLE;
    /// let ct1 = enc_key.encrypt(m, &mut rng);
    ///
    /// let r = Scalar::from(10u32);
    /// let ct2 = enc_key.rerandomise_with(ct1, r);
    ///
    /// assert_eq!(dec_key.decrypt(ct1), dec_key.decrypt(ct2));
    /// ```
    pub fn rerandomise_with(&self, ct: Ciphertext, r: Scalar) -> Ciphertext {
        let c1 = ct.0 + &r * &RISTRETTO_BASEPOINT_TABLE;
        let c2 = ct.1 + &self.0 * r;
        Ciphertext(c1, c2)
    }
}

impl Debug for EncryptionKey {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        write!(f, "EncryptionKey({:?})", self.0.compress())
    }
}

// Conversion traits

impl From<DecryptionKey> for EncryptionKey {
    fn from(dk: DecryptionKey) -> Self {
        dk.ek
    }
}

impl From<RistrettoPoint> for EncryptionKey {
    fn from(y: RistrettoPoint) -> Self {
        Self(y)
    }
}

impl AsRef<RistrettoPoint> for EncryptionKey {
    fn as_ref(&self) -> &RistrettoPoint {
        &self.0
    }
}