1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
use crate::matrix::Matrix;
use crate::vector::Vector;
use crate::{to_i32, StrError};

extern "C" {
    // Computes the solution to a system of linear equations
    // <https://www.netlib.org/lapack/explore-html/d8/d72/dgesv_8f.html>
    fn c_dgesv(
        n: *const i32,
        nrhs: *const i32,
        a: *mut f64,
        lda: *const i32,
        ipiv: *mut i32,
        b: *mut f64,
        ldb: *const i32,
        info: *mut i32,
    );
}

/// (dgesv) Solves a general linear system (real numbers)
///
/// For a general matrix `a` (square, symmetric, non-symmetric, dense,
/// sparse), find `x` such that:
///
/// ```text
///   a   ⋅  x  =  b
/// (m,m)   (m)   (m)
/// ```
///
/// However, the right-hand-side will hold the solution:
///
/// ```text
/// b := a⁻¹⋅b == x
/// ```
///
/// The solution is obtained via LU decomposition using Lapack dgesv routine.
///
/// See also: <https://www.netlib.org/lapack/explore-html/d8/d72/dgesv_8f.html>
///
/// # Note
///
/// 1. The matrix `a` will be modified
/// 2. The right-hand-side `b` will contain the solution `x`
///
/// # Examples
///
/// ```
/// use russell_lab::{solve_lin_sys, Matrix, Vector, StrError};
///
/// fn main() -> Result<(), StrError> {
///     // set matrix and right-hand side
///     let mut a = Matrix::from(&[
///         [1.0,  3.0, -2.0],
///         [3.0,  5.0,  6.0],
///         [2.0,  4.0,  3.0],
///     ]);
///     let mut b = Vector::from(&[5.0, 7.0, 8.0]);
///
///     // solve linear system b := a⁻¹⋅b
///     solve_lin_sys(&mut b, &mut a)?;
///
///     // check
///     let x_correct = "┌         ┐\n\
///                      │ -15.000 │\n\
///                      │   8.000 │\n\
///                      │   2.000 │\n\
///                      └         ┘";
///     assert_eq!(format!("{:.3}", b), x_correct);
///     Ok(())
/// }
/// ```
pub fn solve_lin_sys(b: &mut Vector, a: &mut Matrix) -> Result<(), StrError> {
    let (m, n) = a.dims();
    if m != n {
        return Err("matrix must be square");
    }
    if b.dim() != m {
        return Err("vector has wrong dimension");
    }
    if m == 0 {
        return Ok(());
    }
    let mut ipiv = vec![0; m];
    let m_i32 = to_i32(m);
    let nrhs = 1;
    let lda = to_i32(m);
    let ldb = lda;
    let mut info = 0;
    unsafe {
        c_dgesv(
            &m_i32,
            &nrhs,
            a.as_mut_data().as_mut_ptr(),
            &lda,
            ipiv.as_mut_ptr(),
            b.as_mut_data().as_mut_ptr(),
            &ldb,
            &mut info,
        )
    }
    if info < 0 {
        println!("LAPACK ERROR (dgesv): Argument #{} had an illegal value", -info);
        return Err("LAPACK ERROR (dgesv): An argument had an illegal value");
    } else if info > 0 {
        println!("LAPACK ERROR (dgesv): U({},{}) is exactly zero", info - 1, info - 1);
        return Err("LAPACK ERROR (dgesv): The factorization has been completed, but the factor U is exactly singular");
    }
    Ok(())
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod tests {
    use super::{solve_lin_sys, Matrix, Vector};
    use crate::{mat_vec_mul, vec_add, vec_approx_eq, vec_norm, Norm};

    #[test]
    fn solve_lin_sys_fails_on_non_square() {
        let mut a = Matrix::new(2, 3);
        let mut b = Vector::new(3);
        assert_eq!(solve_lin_sys(&mut b, &mut a), Err("matrix must be square"));
    }

    #[test]
    fn solve_lin_sys_fails_on_wrong_dims() {
        let mut a = Matrix::new(2, 2);
        let mut b = Vector::new(3);
        assert_eq!(solve_lin_sys(&mut b, &mut a), Err("vector has wrong dimension"));
    }

    #[test]
    fn solve_lin_sys_0x0_works() {
        let mut a = Matrix::new(0, 0);
        let mut b = Vector::new(0);
        solve_lin_sys(&mut b, &mut a).unwrap();
        assert_eq!(b.dim(), 0);
    }

    #[test]
    fn solve_lin_sys_works() {
        #[rustfmt::skip]
        let mut a = Matrix::from(&[
            [2.0, 1.0, 1.0, 3.0, 2.0],
            [1.0, 2.0, 2.0, 1.0, 1.0],
            [1.0, 2.0, 9.0, 1.0, 5.0],
            [3.0, 1.0, 1.0, 7.0, 1.0],
            [2.0, 1.0, 5.0, 1.0, 8.0],
        ]);
        #[rustfmt::skip]
        let mut b = Vector::from(&[
            -2.0,
             4.0,
             3.0,
            -5.0,
             1.0,
        ]);
        solve_lin_sys(&mut b, &mut a).unwrap();
        #[rustfmt::skip]
        let x_correct = &[
            -629.0 / 98.0,
             237.0 / 49.0,
             -53.0 / 49.0,
              62.0 / 49.0,
              23.0 / 14.0,
        ];
        vec_approx_eq(&b, x_correct, 1e-13);
    }

    #[test]
    fn solve_lin_sys_1_works() {
        // example from https://numericalalgorithmsgroup.github.io/LAPACK_Examples/examples/doc/dgesv_example.html
        #[rustfmt::skip]
        let mut a = Matrix::from(&[
            [ 1.80,  2.88,  2.05, -0.89],
            [ 5.25, -2.95, -0.95, -3.80],
            [ 1.58, -2.69, -2.90, -1.04],
            [-1.11, -0.66, -0.59,  0.80],
        ]);
        #[rustfmt::skip]
        let mut b = Vector::from(&[
             9.52,
            24.35,
             0.77,
            -6.22,
        ]);
        solve_lin_sys(&mut b, &mut a).unwrap();
        #[rustfmt::skip]
        let x_correct = &[
             1.0,
            -1.0,
             3.0,
            -5.0,
        ];
        vec_approx_eq(&b, x_correct, 1e-14);
    }

    #[test]
    fn solve_lin_sys_2_works() {
        const TARGET: f64 = 1234.0;
        for m in [0, 1, 5, 7, 12_usize] {
            // prepare matrix and rhs
            let mut a = Matrix::filled(m, m, 1.0);
            let mut b = Vector::filled(m, TARGET);
            for i in 0..m {
                for j in (i + 1)..m {
                    a.mul(i, j, -1.0);
                }
            }

            // take copies
            let a_copy = a.clone();
            let b_copy = b.clone();

            // solve linear system: b := a⁻¹⋅b == x
            solve_lin_sys(&mut b, &mut a).unwrap();

            // compare solution
            if m == 0 {
                let empty: [f64; 0] = [];
                assert_eq!(b.as_data(), &empty);
            } else {
                let mut x_correct = Vector::new(m);
                x_correct[0] = TARGET;
                assert_eq!(b.as_data(), x_correct.as_data());
            }

            // check solution a ⋅ x == rhs (with x == b)
            let mut rhs = Vector::new(m);
            let mut diff = Vector::new(m);
            mat_vec_mul(&mut rhs, 1.0, &a_copy, &b).unwrap();
            vec_add(&mut diff, 1.0, &rhs, -1.0, &b_copy).unwrap();
            assert_eq!(vec_norm(&diff, Norm::Max), 0.0);
        }
    }

    #[test]
    fn solve_lin_sys_singular_handles_error() {
        let mut a = Matrix::from(&[
            [0.0, 0.0], //
            [0.0, 1.0], //
        ]);
        let mut b = Vector::from(&[1.0, 1.0]);
        assert_eq!(
            solve_lin_sys(&mut b, &mut a).err(),
            Some("LAPACK ERROR (dgesv): The factorization has been completed, but the factor U is exactly singular")
        );
    }
}