1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Copyright © 2017 University of Malta

// This program is free software: you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// this program. If not, see <http://www.gnu.org/licenses/>.

use Complex;

use std::cmp::Ordering;
use std::hash::{Hash, Hasher};

/// A complex number that supports ordering and hashing.
///
/// For ordering, the real part has precedence over the imaginary
/// part. Negative zero is ordered as less than positive zero. All
/// NaNs are ordered as equal and as less than negative infinity, with
/// the NaN sign ignored.
///
/// # Examples
///
/// ```rust
/// use rug::Complex;
/// use rug::complex::OrdComplex;
/// use rug::float::Special;
/// use std::cmp::Ordering;
///
/// let nan_c = Complex::with_val(53, (Special::Nan, Special::Nan));
/// let nan = OrdComplex::from(nan_c);
/// assert_eq!(nan.cmp(&nan), Ordering::Equal);
///
/// let one_neg0_c = Complex::with_val(53, (1, Special::NegZero));
/// let one_neg0 = OrdComplex::from(one_neg0_c);
/// let one_pos0_c = Complex::with_val(53, (1, Special::Zero));
/// let one_pos0 = OrdComplex::from(one_pos0_c);
/// assert_eq!(one_neg0.cmp(&one_pos0), Ordering::Less);
///
/// let zero_inf_s = (Special::Zero, Special::Infinity);
/// let zero_inf_c = Complex::with_val(53, zero_inf_s);
/// let zero_inf = OrdComplex::from(zero_inf_c);
/// assert_eq!(one_pos0.cmp(&zero_inf), Ordering::Greater);
/// ```
#[derive(Clone, Debug, Default)]
pub struct OrdComplex {
    inner: Complex,
}

impl OrdComplex {
    /// Extracts the underlying [`Complex`](../struct.Complex.html).
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rug::Complex;
    /// use rug::complex::OrdComplex;
    /// let c = Complex::with_val(53, (1.5, 2.5));
    /// let ord = OrdComplex::from(c);
    /// let c_ref = ord.as_complex();
    /// let (re, im) = c_ref.as_real_imag();
    /// assert_eq!(*re, 1.5);
    /// assert_eq!(*im, 2.5);
    pub fn as_complex(&self) -> &Complex {
        &self.inner
    }

    /// Extracts the underlying [`Complex`](../struct.Complex.html).
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rug::Complex;
    /// use rug::complex::OrdComplex;
    /// let c = Complex::with_val(53, (1.5, -2.5));
    /// let mut ord = OrdComplex::from(c);
    /// ord.as_complex_mut().conj_mut();
    /// let (re, im) = ord.as_complex().as_real_imag();
    /// assert_eq!(*re, 1.5);
    /// assert_eq!(*im, 2.5);
    pub fn as_complex_mut(&mut self) -> &mut Complex {
        &mut self.inner
    }
}

impl Hash for OrdComplex {
    #[inline]
    fn hash<H: Hasher>(&self, state: &mut H) {
        let (re, im) = self.inner.as_real_imag();
        let (re, im) = (re.as_ord(), im.as_ord());
        re.hash(state);
        im.hash(state);
    }
}

impl PartialEq for OrdComplex {
    #[inline]
    fn eq(&self, other: &OrdComplex) -> bool {
        let (re, im) = self.inner.as_real_imag();
        let (re, im) = (re.as_ord(), im.as_ord());
        let (other_re, other_im) = other.inner.as_real_imag();
        let (other_re, other_im) = (other_re.as_ord(), other_im.as_ord());
        re.eq(other_re) && im.eq(other_im)
    }
}

impl Eq for OrdComplex {}

impl PartialOrd for OrdComplex {
    #[inline]
    fn partial_cmp(&self, other: &OrdComplex) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for OrdComplex {
    #[inline]
    fn cmp(&self, other: &OrdComplex) -> Ordering {
        let (re, im) = self.inner.as_real_imag();
        let (re, im) = (re.as_ord(), im.as_ord());
        let (other_re, other_im) = other.inner.as_real_imag();
        let (other_re, other_im) = (other_re.as_ord(), other_im.as_ord());
        re.cmp(other_re).then(im.cmp(other_im))
    }
}

impl From<Complex> for OrdComplex {
    #[inline]
    fn from(c: Complex) -> OrdComplex {
        OrdComplex { inner: c }
    }
}