1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
//! An audio sample rate conversion library for Rust.
//!
//! This library provides resamplers to process audio in chunks.
//!
//! The ratio between input and output sample rates is completely free.
//! Implementations are available that accept a fixed length input
//! while returning a variable length output, and vice versa.
//!
//! Rubato can be used in realtime applications without any allocation during
//! processing by preallocating a [Resampler] and using its
//! [input_buffer_allocate](Resampler::input_buffer_allocate) and
//! [output_buffer_allocate](Resampler::output_buffer_allocate) methods before
//! beginning processing. The [log feature](#log-enable-logging) feature should be disabled
//! for realtime use (it is disabled by default).
//!
//! ### Input and output data format
//!
//! Input and output data is stored non-interleaved.
//!
//! The output data is stored in a vector of vectors, `Vec<Vec<f32>>` or `Vec<Vec<f64>>`.
//! The inner vectors (`Vec<f32>` or `Vec<f64>`) hold the sample values for one channel each.
//!
//! The input data is similar, except that it allows the inner vectors to be `AsRef<[f32]>` or `AsRef<[f64]>`.
//! Normal vectors can be used since `Vec` implements the `AsRef` trait.
//!
//! ### Asynchronous resampling
//!
//! The resampling is based on band-limited interpolation using sinc
//! interpolation filters. The sinc interpolation upsamples by an adjustable factor,
//! and then the new sample points are calculated by interpolating between these points.
//! The resampling ratio can be updated at any time.
//!
//! ### Synchronous resampling
//!
//! Synchronous resampling is implemented via FFT. The data is FFT:ed, the spectrum modified,
//! and then inverse FFT:ed to get the resampled data.
//! This type of resampler is considerably faster but doesn't support changing the resampling ratio.
//!
//! ### SIMD acceleration
//!
//! #### Asynchronous resampling
//!
//! The asynchronous resampler is designed to benefit from auto-vectorization, meaning that the Rust compiler
//! can recognize calculations that can be done in parallel. It will then use SIMD instructions for those.
//! This works quite well, but there is still room for improvement.
//! To address this, it also has optimized SIMD support.
//! This gets enabled at runtime by checking the SIMD support of the CPU.
//!
//! On x86_64 it will try to use SSE3. The speed benefit compared to auto-vectorization
//! depends on the CPU, but tends to be in the range 20-30% for 64-bit data, and 50-100% for 32-bit data.
//! There is also optional support for AVX on x86_64, and Neon on aarch64 via Cargo features.
//!
//! #### Synchronous resampling
//!
//! The synchronous resamplers benefit from the SIMD support of the RustFFT library.
//!
//! ### Cargo features
//!
//! ##### `avx`: AVX on x86_64
//!
//! The `avx` feature is enabled by default, and enables the use of AVX when it's available.
//! The speed increase compared to SSE depends on the CPU, and tends to range from zero to 50%.
//! On other architectures than x86_64 the `avx` feature does nothing.
//!
//! ##### `neon`: Experimental Neon support on aarch64
//!
//! Experimental support for Neon is available for aarch64 (64-bit Arm) by enabling the `neon` feature.
//! This requires the use of a nightly compiler, as the Neon support in Rust is still experimental.
//! On a Raspberry Pi 4, this gives a boost of about 10% for 64-bit floats and 50% for 32-bit floats when
//! compared to the auto-vectorized implementation.
//! Note that this only works on a full 64-bit operating system.
//!
//! ##### `log`: Enable logging
//!
//! This feature enables logging via the `log` crate. This is intended for debugging purposes.
//! Note that outputting logs allocates a [std::string::String] and most logging implementations involve various other system calls.
//! These calls may take some (unpredictable) time to return, during which the application is blocked.
//! This means that logging should be avoided if using this library in a realtime application.
//!
//! ## Example
//!
//! Resample a single chunk of a dummy audio file from 44100 to 48000 Hz.
//! See also the "fixedin64" example that can be used to process a file from disk.
//! ```
//! use rubato::{Resampler, SincFixedIn, InterpolationType, InterpolationParameters, WindowFunction};
//! let params = InterpolationParameters {
//!     sinc_len: 256,
//!     f_cutoff: 0.95,
//!     interpolation: InterpolationType::Linear,
//!     oversampling_factor: 256,
//!     window: WindowFunction::BlackmanHarris2,
//! };
//! let mut resampler = SincFixedIn::<f64>::new(
//!     48000 as f64 / 44100 as f64,
//!     2.0,
//!     params,
//!     1024,
//!     2,
//! ).unwrap();
//!
//! let waves_in = vec![vec![0.0f64; 1024];2];
//! let waves_out = resampler.process(&waves_in, None).unwrap();
//! ```
//!
//! ## Compatibility
//!
//! The `rubato` crate requires rustc version 1.40 or newer.
//!
//! ## Changelog
//!
//! - v0.11.0
//!   - New api to allow use in realtime applications.
//!   - Configurable adjust range of asynchronous resamplers.
//! - v0.10.1
//!   - Fix compiling with neon feature after changes in latest nightly.
//! - v0.10.0
//!   - Add an object-safe wrapper trait for Resampler.
//! - v0.9.0
//!   - Accept any AsRef<[T]> as input.

#![cfg_attr(feature = "neon", feature(aarch64_target_feature))]
#![cfg_attr(feature = "neon", feature(stdsimd))]

#[cfg(feature = "log")]
extern crate log;

// Logging wrapper macros to avoid cluttering the code with conditionals
#[allow(unused)]
macro_rules! trace { ($($x:tt)*) => (
    #[cfg(feature = "log")] {
        log::trace!($($x)*)
    }
) }
#[allow(unused)]
macro_rules! debug { ($($x:tt)*) => (
    #[cfg(feature = "log")] {
        log::debug!($($x)*)
    }
) }
#[allow(unused)]
macro_rules! info { ($($x:tt)*) => (
    #[cfg(feature = "log")] {
        log::info!($($x)*)
    }
) }
#[allow(unused)]
macro_rules! warn { ($($x:tt)*) => (
    #[cfg(feature = "log")] {
        log::warn!($($x)*)
    }
) }
#[allow(unused)]
macro_rules! error { ($($x:tt)*) => (
    #[cfg(feature = "log")] {
        log::error!($($x)*)
    }
) }

mod asynchro;
mod error;
mod interpolation;
mod sample;
mod sinc;
mod synchro;
mod windows;

pub use crate::asynchro::{ScalarInterpolator, SincFixedIn, SincFixedOut};
pub use crate::error::{
    CpuFeature, MissingCpuFeature, ResampleError, ResampleResult, ResamplerConstructionError,
};
pub use crate::sample::Sample;
pub use crate::synchro::{FftFixedIn, FftFixedInOut, FftFixedOut};
pub use crate::windows::WindowFunction;

/// Helper macro to define a dummy implementation of the sample trait if a
/// feature is not supported.
macro_rules! interpolator {
    (
    #[cfg($($cond:tt)*)]
    mod $mod:ident;
    trait $trait:ident;
    ) => {
        #[cfg($($cond)*)]
        pub mod $mod;

        #[cfg($($cond)*)]
        use self::$mod::$trait;

        /// Dummy trait when not supported.
        #[cfg(not($($cond)*))]
        pub trait $trait {
        }

        /// Dummy impl of trait when not supported.
        #[cfg(not($($cond)*))]
        impl<T> $trait for T where T: Sample {
        }
    }
}

interpolator! {
    #[cfg(all(target_arch = "x86_64", feature = "avx"))]
    mod interpolator_avx;
    trait AvxSample;
}

interpolator! {
    #[cfg(target_arch = "x86_64")]
    mod interpolator_sse;
    trait SseSample;
}

interpolator! {
    #[cfg(all(target_arch = "aarch64", feature = "neon"))]
    mod interpolator_neon;
    trait NeonSample;
}

/// A struct holding the parameters for interpolation.
#[derive(Debug)]
pub struct InterpolationParameters {
    /// Length of the windowed sinc interpolation filter.
    /// Higher values can allow a higher cut-off frequency leading to less high frequency roll-off
    /// at the expense of higher cpu usage. 256 is a good starting point.
    /// The value will be rounded up to the nearest multiple of 8.
    pub sinc_len: usize,
    /// Relative cutoff frequency of the sinc interpolation filter
    /// (relative to the lowest one of fs_in/2 or fs_out/2). Start at 0.95, and increase if needed.
    pub f_cutoff: f32,
    /// The number of intermediate points to use for interpolation.
    /// Higher values use more memory for storing the sinc filters.
    /// Only the points actually needed are calculated during processing
    /// so a larger number does not directly lead to higher cpu usage.
    /// But keeping it down helps in keeping the sincs in the cpu cache. Start at 128.
    pub oversampling_factor: usize,
    /// Interpolation type, see `InterpolationType`
    pub interpolation: InterpolationType,
    /// Window function to use.
    pub window: WindowFunction,
}

/// Interpolation methods that can be selected. For asynchronous interpolation where the
/// ratio between input and output sample rates can be any number, it's not possible to
/// pre-calculate all the needed interpolation filters.
/// Instead they have to be computed as needed, which becomes impractical since the
/// sincs are very expensive to generate in terms of cpu time.
/// It's more efficient to combine the sinc filters with some other interpolation technique.
/// Then sinc filters are used to provide a fixed number of interpolated points between input samples,
/// and then the new value is calculated by interpolation between those points.
#[derive(Debug)]
pub enum InterpolationType {
    /// For cubic interpolation, the four nearest intermediate points are calculated
    /// using sinc interpolation.
    /// Then a cubic polynomial is fitted to these points, and is then used to calculate the new sample value.
    /// The computation time as about twice the one for linear interpolation,
    /// but it requires much fewer intermediate points for a good result.
    Cubic,
    /// With linear interpolation the new sample value is calculated by linear interpolation
    /// between the two nearest points.
    /// This requires two intermediate points to be calculated using sinc interpolation,
    /// and te output is a weighted average of these two.
    /// This is relatively fast, but needs a large number of intermediate points to
    /// push the resampling artefacts below the noise floor.
    Linear,
    /// The Nearest mode doesn't do any interpolation, but simply picks the nearest intermediate point.
    /// This is useful when the nearest point is actually the correct one, for example when upsampling by a factor 2,
    /// like 48kHz->96kHz.
    /// Then setting the oversampling_factor to 2, and using Nearest mode,
    /// no unnecessary computations are performed and the result is the same as for synchronous resampling.
    /// This also works for other ratios that can be expressed by a fraction. For 44.1kHz -> 48 kHz,
    /// setting oversampling_factor to 160 gives the desired result (since 48kHz = 160/147 * 44.1kHz).
    Nearest,
}

/// A resampler that us used to resample a chunk of audio to a new sample rate.
/// For asynchronous resamplers, the rate can be adjusted as required.
///
/// This trait is not object safe. If you need an object safe resampler,
/// use the [VecResampler] wrapper trait.
pub trait Resampler<T>: Send {
    /// This is a convenience wrapper for [process_into_buffer](Resampler::process_into_buffer)
    /// that allocates the output buffer with each call. For realtime applications, use
    /// [process_into_buffer](Resampler::process_into_buffer) with a buffer allocated by
    /// [output_buffer_allocate](Resampler::output_buffer_allocate) instead of this function.
    fn process<V: AsRef<[T]>>(
        &mut self,
        wave_in: &[V],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<Vec<Vec<T>>> {
        let frames = self.output_frames_next();
        let channels = self.nbr_channels();
        let mut wave_out = Vec::with_capacity(channels);
        for _ in 0..channels {
            wave_out.push(Vec::with_capacity(frames));
        }
        self.process_into_buffer(wave_in, &mut wave_out, active_channels_mask)?;
        Ok(wave_out)
    }

    /// Resample a buffer of audio to a pre-allocated output buffer.
    /// Use this in real-time applications where the unpredictable time required to allocate
    /// memory from the heap can cause glitches. If this is not a problem, you may use
    /// the [process](Resampler::process) method instead.
    ///
    /// The input and output buffers are noninterleaved.
    /// The input is a slice, where each element of the slice is itself referenceable
    /// as a slice ([AsRef<\[T\]>](AsRef)) which contains the samples for a single channel.
    /// Because [Vec<T>] implements [AsRef<\[T\]>](AsRef), the input may be [`Vec<Vec<T>>`](Vec).
    ///
    /// The output data is a slice, where each element of the slice is a [Vec] which contains
    /// the samples for a single channel. If the output channel vectors do not have sufficient
    /// capacity for all output samples, they will be resized by this function. To avoid these
    /// allocations during this function, allocate the output buffer with
    /// [output_buffer_allocate](Resampler::output_buffer_allocate) before calling this function
    /// and reuse the same buffer for each call.
    ///
    /// The `active_channels_mask` is optional.
    /// Any channel marked as inactive by a false value will be skipped during processing
    /// and the corresponding output will be left unchanged.
    /// If `None` is given, all channels will be considered active unless their length is 0.
    fn process_into_buffer<V: AsRef<[T]>>(
        &mut self,
        wave_in: &[V],
        wave_out: &mut [Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<()>;

    /// Convenience method for allocating an input buffer suitable for use with
    /// [process_into_buffer](Resampler::process_into_buffer). The buffer's capacity
    /// is big enough to prevent allocating additional heap memory before any call to
    /// [process_into_buffer](Resampler::process_into_buffer) regardless of the current
    /// resampling ratio.
    fn input_buffer_allocate(&self) -> Vec<Vec<T>> {
        let frames = self.input_frames_max();
        let channels = self.nbr_channels();
        let mut buffer = Vec::with_capacity(channels);
        for _ in 0..channels {
            buffer.push(Vec::with_capacity(frames));
        }
        buffer
    }

    /// Get the maximum number of input frames per channel the resampler could require
    fn input_frames_max(&self) -> usize;

    /// Get the number of frames per channel needed for the next call to
    /// [process_into_buffer](Resampler::process_into_buffer) or [process](Resampler::process)
    fn input_frames_next(&self) -> usize;

    /// Get the maximum number of channels this Resampler is configured for
    fn nbr_channels(&self) -> usize;

    /// Convenience method for allocating an output buffer suitable for use with
    /// [process_into_buffer](Resampler::process_into_buffer). The buffer's capacity
    /// is big enough to prevent allocating additional heap memory during any call to
    /// [process_into_buffer](Resampler::process_into_buffer) regardless of the current
    /// resampling ratio.
    fn output_buffer_allocate(&self) -> Vec<Vec<T>> {
        let frames = self.output_frames_max();
        let channels = self.nbr_channels();
        let mut buffer = Vec::with_capacity(channels);
        for _ in 0..channels {
            buffer.push(Vec::with_capacity(frames));
        }
        buffer
    }

    /// Get the max number of output frames per channel
    fn output_frames_max(&self) -> usize;

    /// Get the number of frames per channel that will be output from the next call to
    /// [process_into_buffer](Resampler::process_into_buffer) or [process](Resampler::process)
    fn output_frames_next(&self) -> usize;

    /// Update the resample ratio
    ///
    /// For asynchronous resamplers, the ratio must be within
    /// `original / maximum` to `original * maximum`, where the original and maximum are the
    /// resampling ratios that were provided to the constructor. Trying to set the ratio
    /// outside these bounds will return [ResampleError::RatioOutOfBounds].
    ///
    /// For synchronous resamplers, this will always return [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio(&mut self, new_ratio: f64) -> ResampleResult<()>;

    /// Update the resample ratio as a factor relative to the original one
    ///
    /// For asynchronous resamplers, the relative ratio must be within
    /// `1 / maximum` to `maximum`, where maximum is the maximum
    /// resampling ratio that was provided to the constructor. Trying to set the ratio
    /// outside these bounds will return [ResampleError::RatioOutOfBounds].
    ///
    /// Higher ratios above 1.0 slow down the output and lower the pitch. Lower ratios
    /// below 1.0 speed up the output and raise the pitch.
    ///
    /// For synchronous resamplers, this will always return [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio_relative(&mut self, rel_ratio: f64) -> ResampleResult<()>;
}

/// This is a helper trait that can be used when a [Resampler] must be object safe.
///
/// It differs from [Resampler] only by fixing the type of the input of `process()`
/// and `process_into_buffer` to `&[Vec<T>]`.
/// This allows it to be made into a trait object like this:
/// ```
/// # use rubato::{FftFixedIn, VecResampler};
/// let boxed: Box<dyn VecResampler<f64>> = Box::new(FftFixedIn::<f64>::new(44100, 88200, 1024, 2, 2).unwrap());
/// ```
/// Use this implementation as an example if you need to fix the input type to something else.
pub trait VecResampler<T>: Send {
    /// Refer to [Resampler::process]
    fn process(
        &mut self,
        wave_in: &[Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<Vec<Vec<T>>>;

    /// Refer to [Resampler::process_into_buffer]
    fn process_into_buffer(
        &mut self,
        wave_in: &[Vec<T>],
        wave_out: &mut [Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<()>;

    /// Refer to [Resampler::input_buffer_allocate]
    fn input_buffer_allocate(&self) -> Vec<Vec<T>>;

    /// Refer to [Resampler::input_frames_max]
    fn input_frames_max(&self) -> usize;

    /// Refer to [Resampler::input_frames_next]
    fn input_frames_next(&self) -> usize;

    /// Refer to [Resampler::nbr_channels]
    fn nbr_channels(&self) -> usize;

    /// Refer to [Resampler::output_buffer_allocate]
    fn output_buffer_allocate(&self) -> Vec<Vec<T>>;

    /// Refer to [Resampler::output_frames_max]
    fn output_frames_max(&self) -> usize;

    /// Refer to [Resampler::output_frames_next]
    fn output_frames_next(&self) -> usize;

    /// Refer to [Resampler::set_resample_ratio]
    fn set_resample_ratio(&mut self, new_ratio: f64) -> ResampleResult<()>;

    /// Refer to [Resampler::set_resample_ratio_relative]
    fn set_resample_ratio_relative(&mut self, rel_ratio: f64) -> ResampleResult<()>;
}

impl<T, U> VecResampler<T> for U
where
    U: Resampler<T>,
{
    fn process(
        &mut self,
        wave_in: &[Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<Vec<Vec<T>>> {
        Resampler::process(self, wave_in, active_channels_mask)
    }

    fn process_into_buffer(
        &mut self,
        wave_in: &[Vec<T>],
        wave_out: &mut [Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<()> {
        Resampler::process_into_buffer(self, wave_in, wave_out, active_channels_mask)
    }

    fn output_buffer_allocate(&self) -> Vec<Vec<T>> {
        Resampler::output_buffer_allocate(self)
    }

    fn output_frames_next(&self) -> usize {
        Resampler::output_frames_next(self)
    }

    fn output_frames_max(&self) -> usize {
        Resampler::output_frames_max(self)
    }

    fn input_frames_next(&self) -> usize {
        Resampler::input_frames_next(self)
    }

    fn nbr_channels(&self) -> usize {
        Resampler::nbr_channels(self)
    }

    fn input_frames_max(&self) -> usize {
        Resampler::input_frames_max(self)
    }

    fn input_buffer_allocate(&self) -> Vec<Vec<T>> {
        Resampler::input_buffer_allocate(self)
    }

    fn set_resample_ratio(&mut self, new_ratio: f64) -> ResampleResult<()> {
        Resampler::set_resample_ratio(self, new_ratio)
    }

    fn set_resample_ratio_relative(&mut self, rel_ratio: f64) -> ResampleResult<()> {
        Resampler::set_resample_ratio_relative(self, rel_ratio)
    }
}

/// Helper to make a mask for the active channels based on which ones are empty.
fn update_mask_from_buffers<T, V: AsRef<[T]>>(wave_in: &[V], mask: &mut [bool]) {
    for (wave, active) in wave_in.iter().zip(mask.iter_mut()) {
        let wave = wave.as_ref();
        *active = !wave.is_empty();
    }
}

pub(crate) fn validate_buffers<T, V: AsRef<[T]>>(
    wave_in: &[V],
    wave_out: &mut [Vec<T>],
    mask: &[bool],
    channels: usize,
    needed_len: usize,
) -> ResampleResult<()> {
    if wave_in.len() != channels {
        return Err(ResampleError::WrongNumberOfInputChannels {
            expected: channels,
            actual: wave_in.len(),
        });
    }
    if mask.len() != channels {
        return Err(ResampleError::WrongNumberOfMaskChannels {
            expected: channels,
            actual: wave_in.len(),
        });
    }
    for (chan, wave) in wave_in.iter().enumerate() {
        let wave = wave.as_ref();
        if wave.len() != needed_len && mask[chan] {
            return Err(ResampleError::WrongNumberOfInputFrames {
                channel: chan,
                expected: needed_len,
                actual: wave.len(),
            });
        }
    }
    if wave_out.len() != channels {
        return Err(ResampleError::WrongNumberOfOutputChannels {
            expected: channels,
            actual: wave_out.len(),
        });
    }
    Ok(())
}

#[cfg(test)]
mod tests {
    use crate::VecResampler;
    use crate::{FftFixedIn, FftFixedInOut, FftFixedOut};
    use crate::{SincFixedIn, SincFixedOut};

    // This tests that a VecResampler can be boxed.
    #[test]
    fn boxed_resampler() {
        let boxed: Box<dyn VecResampler<f64>> =
            Box::new(FftFixedIn::<f64>::new(44100, 88200, 1024, 2, 2).unwrap());
        let result = process_with_boxed(boxed);
        assert_eq!(result.len(), 2);
        assert_eq!(result[0].len(), 2048);
        assert_eq!(result[1].len(), 2048);
    }

    fn process_with_boxed(mut resampler: Box<dyn VecResampler<f64>>) -> Vec<Vec<f64>> {
        let frames = resampler.input_frames_next();
        let waves = vec![vec![0.0f64; frames]; 2];
        resampler.process(&waves, None).unwrap()
    }

    fn impl_send<T: Send>() {
        fn is_send<T: Send>() {}
        is_send::<SincFixedOut<T>>();
        is_send::<SincFixedIn<T>>();
        is_send::<FftFixedOut<T>>();
        is_send::<FftFixedIn<T>>();
        is_send::<FftFixedInOut<T>>();
    }

    // This tests that all resamplers are Send.
    #[test]
    fn test_impl_send() {
        impl_send::<f32>();
        impl_send::<f64>();
    }
}