1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
//! A realtime-safe single-producer single-consumer (SPSC) ring buffer.
//!
//! A [`RingBuffer`] consists of two parts:
//! a [`Producer`] for writing into the ring buffer and
//! a [`Consumer`] for reading from the ring buffer.
//!
//! A fixed-capacity buffer is allocated on construction.
//! After that, no more memory is allocated (unless the type `T` does that internally).
//! Reading from and writing into the ring buffer is *lock-free* and *wait-free*.
//! All reading and writing functions return immediately.
//! Attempts to write to a full buffer return an error;
//! values inside the buffer are *not* overwritten.
//! Attempts to read from an empty buffer return an error as well.
//! Only a single thread can write into the ring buffer and a single thread
//! (typically a different one) can read from the ring buffer.
//! If the queue is empty, there is no way for the reading thread to wait
//! for new data, other than trying repeatedly until reading succeeds.
//! Similarly, if the queue is full, there is no way for the writing thread
//! to wait for newly available space to write to, other than trying repeatedly.
//!
//! # Examples
//!
//! Moving single elements into and out of a queue with
//! [`Producer::push()`] and [`Consumer::pop()`], respectively:
//!
//! ```
//! use rtrb::{RingBuffer, PushError, PopError};
//!
//! let (mut producer, mut consumer) = RingBuffer::new(2);
//!
//! assert_eq!(producer.push(10), Ok(()));
//! assert_eq!(producer.push(20), Ok(()));
//! assert_eq!(producer.push(30), Err(PushError::Full(30)));
//!
//! std::thread::spawn(move || {
//!     assert_eq!(consumer.pop(), Ok(10));
//!     assert_eq!(consumer.pop(), Ok(20));
//!     assert_eq!(consumer.pop(), Err(PopError::Empty));
//! }).join().unwrap();
//! ```
//!
//! See the documentation of the [`chunks#examples`] module
//! for examples that write multiple items at once with
//! [`Producer::write_chunk_uninit()`] and [`Producer::write_chunk()`]
//! and read multiple items with [`Consumer::read_chunk()`].

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(rust_2018_idioms)]
#![deny(missing_docs, missing_debug_implementations)]
#![deny(unsafe_op_in_unsafe_fn)]
#![warn(clippy::undocumented_unsafe_blocks, clippy::unnecessary_safety_comment)]

extern crate alloc;

use alloc::sync::Arc;
use alloc::vec::Vec;
use core::cell::Cell;
use core::fmt;
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit};
use core::sync::atomic::{AtomicUsize, Ordering};

#[allow(dead_code, clippy::undocumented_unsafe_blocks)]
mod cache_padded;
use cache_padded::CachePadded;

pub mod chunks;

// This is used in the documentation.
#[allow(unused_imports)]
use chunks::WriteChunkUninit;

/// A bounded single-producer single-consumer (SPSC) queue.
///
/// Elements can be written with a [`Producer`] and read with a [`Consumer`],
/// both of which can be obtained with [`RingBuffer::new()`].
///
/// *See also the [crate-level documentation](crate).*
#[derive(Debug)]
pub struct RingBuffer<T> {
    /// The head of the queue.
    ///
    /// This integer is in range `0 .. 2 * capacity`.
    head: CachePadded<AtomicUsize>,

    /// The tail of the queue.
    ///
    /// This integer is in range `0 .. 2 * capacity`.
    tail: CachePadded<AtomicUsize>,

    /// The buffer holding slots.
    data_ptr: *mut T,

    /// The queue capacity.
    capacity: usize,

    /// Indicates that dropping a `RingBuffer<T>` may drop elements of type `T`.
    _marker: PhantomData<T>,
}

impl<T> RingBuffer<T> {
    /// Creates a `RingBuffer` with the given `capacity` and returns [`Producer`] and [`Consumer`].
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (producer, consumer) = RingBuffer::<f32>::new(100);
    /// ```
    ///
    /// Specifying an explicit type with the [turbofish](https://turbo.fish/)
    /// is is only necessary if it cannot be deduced by the compiler.
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (mut producer, consumer) = RingBuffer::new(100);
    /// assert_eq!(producer.push(0.0f32), Ok(()));
    /// ```
    #[allow(clippy::new_ret_no_self)]
    #[must_use]
    pub fn new(capacity: usize) -> (Producer<T>, Consumer<T>) {
        let buffer = Arc::new(RingBuffer {
            head: CachePadded::new(AtomicUsize::new(0)),
            tail: CachePadded::new(AtomicUsize::new(0)),
            data_ptr: ManuallyDrop::new(Vec::with_capacity(capacity)).as_mut_ptr(),
            capacity,
            _marker: PhantomData,
        });
        let p = Producer {
            buffer: buffer.clone(),
            cached_head: Cell::new(0),
        };
        let c = Consumer {
            buffer,
            cached_tail: Cell::new(0),
        };
        (p, c)
    }

    /// Returns the capacity of the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (producer, consumer) = RingBuffer::<f32>::new(100);
    /// assert_eq!(producer.buffer().capacity(), 100);
    /// assert_eq!(consumer.buffer().capacity(), 100);
    /// // Both producer and consumer of course refer to the same ring buffer:
    /// assert_eq!(producer.buffer(), consumer.buffer());
    /// ```
    pub fn capacity(&self) -> usize {
        self.capacity
    }

    /// Wraps a position from the range `0 .. 2 * capacity` to `0 .. capacity`.
    fn collapse_position(&self, pos: usize) -> usize {
        debug_assert!(pos == 0 || pos < 2 * self.capacity);
        if pos < self.capacity {
            pos
        } else {
            pos - self.capacity
        }
    }

    /// Returns a pointer to the slot at position `pos`.
    ///
    /// If `pos == 0 && capacity == 0`, the returned pointer must not be dereferenced!
    unsafe fn slot_ptr(&self, pos: usize) -> *mut T {
        debug_assert!(pos == 0 || pos < 2 * self.capacity);
        let pos = self.collapse_position(pos);
        // SAFETY: The caller must ensure a valid pos.
        unsafe { self.data_ptr.add(pos) }
    }

    /// Increments a position by going `n` slots forward.
    fn increment(&self, pos: usize, n: usize) -> usize {
        debug_assert!(pos == 0 || pos < 2 * self.capacity);
        debug_assert!(n <= self.capacity);
        let threshold = 2 * self.capacity - n;
        if pos < threshold {
            pos + n
        } else {
            pos - threshold
        }
    }

    /// Increments a position by going one slot forward.
    ///
    /// This is more efficient than self.increment(..., 1).
    fn increment1(&self, pos: usize) -> usize {
        debug_assert_ne!(self.capacity, 0);
        debug_assert!(pos < 2 * self.capacity);
        if pos < 2 * self.capacity - 1 {
            pos + 1
        } else {
            0
        }
    }

    /// Returns the distance between two positions.
    fn distance(&self, a: usize, b: usize) -> usize {
        debug_assert!(a == 0 || a < 2 * self.capacity);
        debug_assert!(b == 0 || b < 2 * self.capacity);
        if a <= b {
            b - a
        } else {
            2 * self.capacity - a + b
        }
    }
}

impl<T> Drop for RingBuffer<T> {
    /// Drops all non-empty slots.
    fn drop(&mut self) {
        let mut head = self.head.load(Ordering::Relaxed);
        let tail = self.tail.load(Ordering::Relaxed);

        // Loop over all slots that hold a value and drop them.
        while head != tail {
            // SAFETY: All slots between head and tail have been initialized.
            unsafe { self.slot_ptr(head).drop_in_place() };
            head = self.increment1(head);
        }

        // Finally, deallocate the buffer, but don't run any destructors.
        // SAFETY: data_ptr and capacity are still valid from the original initialization.
        unsafe { Vec::from_raw_parts(self.data_ptr, 0, self.capacity) };
    }
}

impl<T> PartialEq for RingBuffer<T> {
    /// This method tests for `self` and `other` values to be equal, and is used by `==`.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (p1, c1) = RingBuffer::<f32>::new(1000);
    /// assert_eq!(p1.buffer(), c1.buffer());
    ///
    /// let (p2, c2) = RingBuffer::<f32>::new(1000);
    /// assert_ne!(p1.buffer(), p2.buffer());
    /// ```
    fn eq(&self, other: &Self) -> bool {
        core::ptr::eq(self, other)
    }
}

impl<T> Eq for RingBuffer<T> {}

/// The producer side of a [`RingBuffer`].
///
/// Can be moved between threads,
/// but references from different threads are not allowed
/// (i.e. it is [`Send`] but not [`Sync`]).
///
/// Can only be created with [`RingBuffer::new()`]
/// (together with its counterpart, the [`Consumer`]).
///
/// Individual elements can be moved into the ring buffer with [`Producer::push()`],
/// multiple elements at once can be written with [`Producer::write_chunk()`]
/// and [`Producer::write_chunk_uninit()`].
///
/// The number of free slots currently available for writing can be obtained with
/// [`Producer::slots()`].
///
/// When the `Producer` is dropped, [`Consumer::is_abandoned()`] will return `true`.
/// This can be used as a crude way to communicate to the receiving thread
/// that no more data will be produced.
/// When the `Producer` is dropped after the [`Consumer`] has already been dropped,
/// [`RingBuffer::drop()`] will be called, freeing the allocated memory.
#[derive(Debug, PartialEq, Eq)]
pub struct Producer<T> {
    /// A reference to the ring buffer.
    buffer: Arc<RingBuffer<T>>,

    /// A copy of `buffer.head` for quick access.
    ///
    /// This value can be stale and sometimes needs to be resynchronized with `buffer.head`.
    cached_head: Cell<usize>,
}

// SAFETY: After moving a Producer to another thread, there is still only a single thread
// that can access the producer side of the queue.
unsafe impl<T: Send> Send for Producer<T> {}

impl<T> Producer<T> {
    /// Attempts to push an element into the queue.
    ///
    /// The element is *moved* into the ring buffer and its slot
    /// is made available to be read by the [`Consumer`].
    ///
    /// # Errors
    ///
    /// If the queue is full, the element is returned back as an error.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::{RingBuffer, PushError};
    ///
    /// let (mut p, c) = RingBuffer::new(1);
    ///
    /// assert_eq!(p.push(10), Ok(()));
    /// assert_eq!(p.push(20), Err(PushError::Full(20)));
    /// ```
    pub fn push(&mut self, value: T) -> Result<(), PushError<T>> {
        if let Some(tail) = self.next_tail() {
            // SAFETY: tail points to an empty slot.
            unsafe { self.buffer.slot_ptr(tail).write(value) };
            let tail = self.buffer.increment1(tail);
            self.buffer.tail.store(tail, Ordering::Release);
            Ok(())
        } else {
            Err(PushError::Full(value))
        }
    }

    /// Returns the number of slots available for writing.
    ///
    /// Since items can be concurrently consumed on another thread, the actual number
    /// of available slots may increase at any time (up to the [`RingBuffer::capacity()`]).
    ///
    /// To check for a single available slot,
    /// using [`Producer::is_full()`] is often quicker
    /// (because it might not have to check an atomic variable).
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (p, c) = RingBuffer::<f32>::new(1024);
    ///
    /// assert_eq!(p.slots(), 1024);
    /// ```
    pub fn slots(&self) -> usize {
        let head = self.buffer.head.load(Ordering::Acquire);
        self.cached_head.set(head);
        // "tail" is only ever written by the producer thread, "Relaxed" is enough
        let tail = self.buffer.tail.load(Ordering::Relaxed);
        self.buffer.capacity - self.buffer.distance(head, tail)
    }

    /// Returns `true` if there are currently no slots available for writing.
    ///
    /// A full ring buffer might cease to be full at any time
    /// if the corresponding [`Consumer`] is consuming items in another thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (p, c) = RingBuffer::<f32>::new(1);
    ///
    /// assert!(!p.is_full());
    /// ```
    ///
    /// Since items can be concurrently consumed on another thread, the ring buffer
    /// might not be full for long:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<f32>::new(1);
    /// if p.is_full() {
    ///     // The buffer might be full, but it might as well not be
    ///     // if an item was just consumed on another thread.
    /// }
    /// ```
    ///
    /// However, if it's not full, another thread cannot change that:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<f32>::new(1);
    /// if !p.is_full() {
    ///     // At least one slot is guaranteed to be available for writing.
    /// }
    /// ```
    pub fn is_full(&self) -> bool {
        self.next_tail().is_none()
    }

    /// Returns `true` if the corresponding [`Consumer`] has been destroyed.
    ///
    /// Note that since Rust version 1.74.0, this is not synchronizing with the consumer thread
    /// anymore, see <https://github.com/mgeier/rtrb/issues/114>.
    /// In a future version of `rtrb`, the synchronizing behavior might be restored.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (mut p, c) = RingBuffer::new(7);
    /// assert!(!p.is_abandoned());
    /// assert_eq!(p.push(10), Ok(()));
    /// drop(c);
    /// // The items that are still in the ring buffer are not accessible anymore.
    /// assert!(p.is_abandoned());
    /// // Even though it's futile, items can still be written:
    /// assert_eq!(p.push(11), Ok(()));
    /// ```
    ///
    /// Since the consumer can be concurrently dropped on another thread,
    /// the producer might become abandoned at any time:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<i32>::new(1);
    /// if !p.is_abandoned() {
    ///     // Right now, the consumer might still be alive, but it might as well not be
    ///     // if another thread has just dropped it.
    /// }
    /// ```
    ///
    /// However, if it already is abandoned, it will stay that way:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<i32>::new(1);
    /// if p.is_abandoned() {
    ///     // This is needed since Rust 1.74.0, see https://github.com/mgeier/rtrb/issues/114:
    ///     std::sync::atomic::fence(std::sync::atomic::Ordering::Acquire);
    ///     // The consumer does definitely not exist anymore.
    /// }
    /// ```
    pub fn is_abandoned(&self) -> bool {
        Arc::strong_count(&self.buffer) < 2
    }

    /// Returns a read-only reference to the ring buffer.
    pub fn buffer(&self) -> &RingBuffer<T> {
        &self.buffer
    }

    /// Get the tail position for writing the next slot, if available.
    ///
    /// This is a strict subset of the functionality implemented in `write_chunk_uninit()`.
    /// For performance, this special case is immplemented separately.
    fn next_tail(&self) -> Option<usize> {
        // "tail" is only ever written by the producer thread, "Relaxed" is enough
        let tail = self.buffer.tail.load(Ordering::Relaxed);

        // Check if the queue is *possibly* full.
        if self.buffer.distance(self.cached_head.get(), tail) == self.buffer.capacity {
            // Refresh the head ...
            let head = self.buffer.head.load(Ordering::Acquire);
            self.cached_head.set(head);

            // ... and check if it's *really* full.
            if self.buffer.distance(head, tail) == self.buffer.capacity {
                return None;
            }
        }
        Some(tail)
    }
}

/// The consumer side of a [`RingBuffer`].
///
/// Can be moved between threads,
/// but references from different threads are not allowed
/// (i.e. it is [`Send`] but not [`Sync`]).
///
/// Can only be created with [`RingBuffer::new()`]
/// (together with its counterpart, the [`Producer`]).
///
/// Individual elements can be moved out of the ring buffer with [`Consumer::pop()`],
/// multiple elements at once can be read with [`Consumer::read_chunk()`].
///
/// The number of slots currently available for reading can be obtained with
/// [`Consumer::slots()`].
///
/// When the `Consumer` is dropped, [`Producer::is_abandoned()`] will return `true`.
/// This can be used as a crude way to communicate to the sending thread
/// that no more data will be consumed.
/// When the `Consumer` is dropped after the [`Producer`] has already been dropped,
/// [`RingBuffer::drop()`] will be called, freeing the allocated memory.
#[derive(Debug, PartialEq, Eq)]
pub struct Consumer<T> {
    /// A reference to the ring buffer.
    buffer: Arc<RingBuffer<T>>,

    /// A copy of `buffer.tail` for quick access.
    ///
    /// This value can be stale and sometimes needs to be resynchronized with `buffer.tail`.
    cached_tail: Cell<usize>,
}

// SAFETY: After moving a Consumer to another thread, there is still only a single thread
// that can access the consumer side of the queue.
unsafe impl<T: Send> Send for Consumer<T> {}

impl<T> Consumer<T> {
    /// Attempts to pop an element from the queue.
    ///
    /// The element is *moved* out of the ring buffer and its slot
    /// is made available to be filled by the [`Producer`] again.
    ///
    /// # Errors
    ///
    /// If the queue is empty, an error is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::{PopError, RingBuffer};
    ///
    /// let (mut p, mut c) = RingBuffer::new(1);
    ///
    /// assert_eq!(p.push(10), Ok(()));
    /// assert_eq!(c.pop(), Ok(10));
    /// assert_eq!(c.pop(), Err(PopError::Empty));
    /// ```
    ///
    /// To obtain an [`Option<T>`](Option), use [`.ok()`](Result::ok) on the result.
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (mut p, mut c) = RingBuffer::new(1);
    /// assert_eq!(p.push(20), Ok(()));
    /// assert_eq!(c.pop().ok(), Some(20));
    /// ```
    pub fn pop(&mut self) -> Result<T, PopError> {
        if let Some(head) = self.next_head() {
            // SAFETY: head points to an initialized slot.
            let value = unsafe { self.buffer.slot_ptr(head).read() };
            let head = self.buffer.increment1(head);
            self.buffer.head.store(head, Ordering::Release);
            Ok(value)
        } else {
            Err(PopError::Empty)
        }
    }

    /// Attempts to read an element from the queue without removing it.
    ///
    /// # Errors
    ///
    /// If the queue is empty, an error is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::{PeekError, RingBuffer};
    ///
    /// let (mut p, c) = RingBuffer::new(1);
    ///
    /// assert_eq!(c.peek(), Err(PeekError::Empty));
    /// assert_eq!(p.push(10), Ok(()));
    /// assert_eq!(c.peek(), Ok(&10));
    /// assert_eq!(c.peek(), Ok(&10));
    /// ```
    pub fn peek(&self) -> Result<&T, PeekError> {
        if let Some(head) = self.next_head() {
            // SAFETY: head points to an initialized slot.
            Ok(unsafe { &*self.buffer.slot_ptr(head) })
        } else {
            Err(PeekError::Empty)
        }
    }

    /// Returns the number of slots available for reading.
    ///
    /// Since items can be concurrently produced on another thread, the actual number
    /// of available slots may increase at any time (up to the [`RingBuffer::capacity()`]).
    ///
    /// To check for a single available slot,
    /// using [`Consumer::is_empty()`] is often quicker
    /// (because it might not have to check an atomic variable).
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (p, c) = RingBuffer::<f32>::new(1024);
    ///
    /// assert_eq!(c.slots(), 0);
    /// ```
    pub fn slots(&self) -> usize {
        let tail = self.buffer.tail.load(Ordering::Acquire);
        self.cached_tail.set(tail);
        // "head" is only ever written by the consumer thread, "Relaxed" is enough
        let head = self.buffer.head.load(Ordering::Relaxed);
        self.buffer.distance(head, tail)
    }

    /// Returns `true` if there are currently no slots available for reading.
    ///
    /// An empty ring buffer might cease to be empty at any time
    /// if the corresponding [`Producer`] is producing items in another thread.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (p, c) = RingBuffer::<f32>::new(1);
    ///
    /// assert!(c.is_empty());
    /// ```
    ///
    /// Since items can be concurrently produced on another thread, the ring buffer
    /// might not be empty for long:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<f32>::new(1);
    /// if c.is_empty() {
    ///     // The buffer might be empty, but it might as well not be
    ///     // if an item was just produced on another thread.
    /// }
    /// ```
    ///
    /// However, if it's not empty, another thread cannot change that:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<f32>::new(1);
    /// if !c.is_empty() {
    ///     // At least one slot is guaranteed to be available for reading.
    /// }
    /// ```
    pub fn is_empty(&self) -> bool {
        self.next_head().is_none()
    }

    /// Returns `true` if the corresponding [`Producer`] has been destroyed.
    ///
    /// Note that since Rust version 1.74.0, this is not synchronizing with the producer thread
    /// anymore, see <https://github.com/mgeier/rtrb/issues/114>.
    /// In a future version of `rtrb`, the synchronizing behavior might be restored.
    ///
    /// # Examples
    ///
    /// ```
    /// use rtrb::RingBuffer;
    ///
    /// let (mut p, mut c) = RingBuffer::new(7);
    /// assert!(!c.is_abandoned());
    /// assert_eq!(p.push(10), Ok(()));
    /// drop(p);
    /// assert!(c.is_abandoned());
    /// // The items that are left in the ring buffer can still be consumed:
    /// assert_eq!(c.pop(), Ok(10));
    /// ```
    ///
    /// Since the producer can be concurrently dropped on another thread,
    /// the consumer might become abandoned at any time:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<i32>::new(1);
    /// if !c.is_abandoned() {
    ///     // Right now, the producer might still be alive, but it might as well not be
    ///     // if another thread has just dropped it.
    /// }
    /// ```
    ///
    /// However, if it already is abandoned, it will stay that way:
    ///
    /// ```
    /// # use rtrb::RingBuffer;
    /// # let (p, c) = RingBuffer::<i32>::new(1);
    /// if c.is_abandoned() {
    ///     // This is needed since Rust 1.74.0, see https://github.com/mgeier/rtrb/issues/114:
    ///     std::sync::atomic::fence(std::sync::atomic::Ordering::Acquire);
    ///     // The producer does definitely not exist anymore.
    /// }
    /// ```
    pub fn is_abandoned(&self) -> bool {
        Arc::strong_count(&self.buffer) < 2
    }

    /// Returns a read-only reference to the ring buffer.
    pub fn buffer(&self) -> &RingBuffer<T> {
        &self.buffer
    }

    /// Get the head position for reading the next slot, if available.
    ///
    /// This is a strict subset of the functionality implemented in `read_chunk()`.
    /// For performance, this special case is immplemented separately.
    fn next_head(&self) -> Option<usize> {
        // "head" is only ever written by the consumer thread, "Relaxed" is enough
        let head = self.buffer.head.load(Ordering::Relaxed);

        // Check if the queue is *possibly* empty.
        if head == self.cached_tail.get() {
            // Refresh the tail ...
            let tail = self.buffer.tail.load(Ordering::Acquire);
            self.cached_tail.set(tail);

            // ... and check if it's *really* empty.
            if head == tail {
                return None;
            }
        }
        Some(head)
    }
}

/// Extension trait used to provide a [`copy_to_uninit()`](CopyToUninit::copy_to_uninit)
/// method on built-in slices.
///
/// This can be used to safely copy data to the slices returned from
/// [`WriteChunkUninit::as_mut_slices()`].
///
/// To use this, the trait has to be brought into scope, e.g. with:
///
/// ```
/// use rtrb::CopyToUninit;
/// ```
pub trait CopyToUninit<T: Copy> {
    /// Copies contents to a possibly uninitialized slice.
    fn copy_to_uninit<'a>(&self, dst: &'a mut [MaybeUninit<T>]) -> &'a mut [T];
}

impl<T: Copy> CopyToUninit<T> for [T] {
    /// Copies contents to a possibly uninitialized slice.
    ///
    /// # Panics
    ///
    /// This function will panic if the two slices have different lengths.
    fn copy_to_uninit<'a>(&self, dst: &'a mut [MaybeUninit<T>]) -> &'a mut [T] {
        assert_eq!(
            self.len(),
            dst.len(),
            "source slice length does not match destination slice length"
        );
        let dst_ptr = dst.as_mut_ptr().cast();
        // SAFETY: The lengths have been checked to be equal and
        // the mutable reference makes sure that there is no overlap.
        unsafe {
            self.as_ptr().copy_to_nonoverlapping(dst_ptr, self.len());
            core::slice::from_raw_parts_mut(dst_ptr, self.len())
        }
    }
}

/// Error type for [`Consumer::pop()`].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PopError {
    /// The queue was empty.
    Empty,
}

#[cfg(feature = "std")]
impl std::error::Error for PopError {}

impl fmt::Display for PopError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            PopError::Empty => "empty ring buffer".fmt(f),
        }
    }
}

/// Error type for [`Consumer::peek()`].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PeekError {
    /// The queue was empty.
    Empty,
}

#[cfg(feature = "std")]
impl std::error::Error for PeekError {}

impl fmt::Display for PeekError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            PeekError::Empty => "empty ring buffer".fmt(f),
        }
    }
}

/// Error type for [`Producer::push()`].
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum PushError<T> {
    /// The queue was full.
    Full(T),
}

#[cfg(feature = "std")]
impl<T> std::error::Error for PushError<T> {}

impl<T> fmt::Debug for PushError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            PushError::Full(_) => f.pad("Full(_)"),
        }
    }
}

impl<T> fmt::Display for PushError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            PushError::Full(_) => "full ring buffer".fmt(f),
        }
    }
}