1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
use crate::error::ConversionError;
use crate::packet::{LeapIndicator, ReferenceIdentifier};
#[cfg(all(feature = "chrono", feature = "time"))]
use std::convert::TryInto;
use std::time::SystemTime;

/// Represents a signed duration value.
///
/// It's main purpose is to store signed duration values which the [`std::time::Duration`] is not
/// capable of, while making it possible to return a time-crate independent duration values
/// (i.e. it works without `chrono` support enabled).
///
/// It can be converted to a different duration representation, depending on the
/// enabled time crate support or it has some methods to inspect its value directly.
///
/// If `chrono` crate support is enabled then it will have [`TryInto<chrono::Duration>`] implemented.
/// If `time` crate support is enabled then it will have [`TryInto<time::Duration>`] implemented.
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct SntpDuration(f64);

impl SntpDuration {
    pub(crate) fn from_secs_f64(secs: f64) -> SntpDuration {
        SntpDuration(secs)
    }

    /// Returns with the absolute value of the duration
    ///
    /// As [`std::time::Duration`] cannot store signed values, the returned duration will always be
    /// positive and will store the absolute value. This is a fallible conversion as there can be cases
    /// when duration contains a non-convertible number.
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    /// let clock_offset_abs = result.clock_offset().abs_as_std_duration().unwrap().as_secs_f64();
    /// let clock_offset = clock_offset_abs * result.clock_offset().signum() as f64;
    ///
    /// println!("Clock offset: {} seconds", clock_offset);
    /// ```
    pub fn abs_as_std_duration(&self) -> Result<std::time::Duration, ConversionError> {
        std::time::Duration::try_from_secs_f64(self.0.abs()).map_err(|_| ConversionError::Overflow)
    }

    /// Returns with the sign of the duration
    ///
    /// Works similar way as `signum` methods for built-in types, returns with `1` if the
    /// duration is positive or with `-1` if the duration is negative.
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    /// let clock_offset_abs = result.clock_offset().abs_as_std_duration().unwrap().as_secs_f64();
    /// let clock_offset = clock_offset_abs * result.clock_offset().signum() as f64;
    ///
    /// println!("Clock offset: {} seconds", clock_offset);
    /// ```
    pub fn signum(&self) -> i32 {
        self.0.signum() as i32
    }

    /// Returns with the number of seconds in this duration as a floating point number
    ///
    /// The returned value will have a proper sign, i.e. it will be negative if the
    /// stored duration is negative.
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// println!("Clock offset: {} seconds", result.clock_offset().as_secs_f64());
    /// ```
    pub fn as_secs_f64(&self) -> f64 {
        self.0
    }

    /// Convert instance to [`chrono::Duration`]
    ///
    /// Convenience wrapper for [`TryInto<chrono::Duration>::try_into`] to avoid
    /// type annotations.
    #[cfg(feature = "chrono")]
    pub fn into_chrono_duration(self) -> Result<chrono::Duration, ConversionError> {
        self.try_into()
    }

    /// Convert instance to [`time::Duration`]
    ///
    /// Convenience wrapper for [`TryInto<time::Duration>::try_into`] to avoid
    /// type annotations.
    #[cfg(feature = "time")]
    pub fn into_time_duration(self) -> Result<time::Duration, ConversionError> {
        self.try_into()
    }
}

#[cfg(feature = "chrono")]
impl TryInto<chrono::Duration> for SntpDuration {
    type Error = ConversionError;

    fn try_into(self) -> Result<chrono::Duration, ConversionError> {
        let abs = chrono::Duration::from_std(self.abs_as_std_duration()?)
            .map_err(|_| ConversionError::Overflow)?;

        Ok(abs * self.signum())
    }
}

#[cfg(feature = "time")]
impl TryInto<time::Duration> for SntpDuration {
    type Error = ConversionError;

    fn try_into(self) -> Result<time::Duration, ConversionError> {
        Ok(time::Duration::seconds_f64(self.0))
    }
}

/// Represents a date and time
///
/// It's main purpose is to have a wrapper for different date and time representations, which
/// is usable regadless of the enabled time crate support.
///
/// It can be inspected directly, but there is no built-in timezone conversion, it will
/// always return with UTC timestamps. If you need timezone support then you have to use
/// `chrono` or `time` crate for conversion.
///
/// If `chrono` crate support is enabled then it will have [`TryInto<chrono::DateTime<Utc>>`] implemented.
/// If `time` crate support is enabled then it will have [`TryInto<time::OffsetDateTime>`] implemented.
#[derive(Debug, Clone, Copy)]
pub struct SntpDateTime {
    offset: SntpDuration,
}

impl SntpDateTime {
    pub(crate) fn new(offset: SntpDuration) -> SntpDateTime {
        SntpDateTime { offset }
    }

    /// Returns with the duration since Unix epoch i.e. Unix timestamp
    ///
    /// Then conversion can fail in cases like internal overflow or when
    /// the date is not representable with a Unix timestamp (like it is
    /// before Unix epoch).
    ///
    /// Note that the function uses the actual system time during execution
    /// so assumes that it is monotonic. If the time has been changed
    /// between the actual synchronization and the call of this function,
    /// then it may return with undefined results.
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// let unix_timetamp_utc = result.datetime().unix_timestamp().unwrap();
    /// ```
    pub fn unix_timestamp(&self) -> Result<std::time::Duration, ConversionError> {
        let now = SystemTime::now();

        let corrected = if self.offset.signum() >= 0 {
            now.checked_add(self.offset.abs_as_std_duration()?)
                .ok_or(ConversionError::Overflow)?
        } else {
            now.checked_sub(self.offset.abs_as_std_duration()?)
                .ok_or(ConversionError::Overflow)?
        };

        corrected
            .duration_since(SystemTime::UNIX_EPOCH)
            .map_err(|_| ConversionError::Overflow)
    }

    /// Convert instance to [`std::time::SystemTime`].
    ///
    /// Convenience wrapper for [`TryInto<std::time::SystemTime>::try_into`]
    /// to avoid type annotations.
    pub fn into_system_time(self) -> Result<std::time::SystemTime, ConversionError> {
        self.try_into()
    }

    /// Convert instance to [`chrono::DateTime<chrono::Utc>`].
    ///
    /// Convenience wrapper for [`TryInto<chrono::DateTime<chrono::Utc>>::try_into`]
    /// to avoid type annotations.
    #[cfg(feature = "chrono")]
    pub fn into_chrono_datetime(self) -> Result<chrono::DateTime<chrono::Utc>, ConversionError> {
        self.try_into()
    }

    /// Convert instance to [`time::OffsetDateTime`].
    ///
    /// Convenience wrapper for [`TryInto<time::OffsetDateTime>::try_into`]
    /// to avoid type annotations.
    #[cfg(feature = "time")]
    pub fn into_offset_date_time(self) -> Result<time::OffsetDateTime, ConversionError> {
        self.try_into()
    }
}

impl TryInto<std::time::SystemTime> for SntpDateTime {
    type Error = ConversionError;

    fn try_into(self) -> Result<std::time::SystemTime, ConversionError> {
        if self.offset.signum() > 0 {
            SystemTime::now()
                .checked_add(self.offset.abs_as_std_duration()?)
                .ok_or(ConversionError::Overflow)
        } else {
            SystemTime::now()
                .checked_sub(self.offset.abs_as_std_duration()?)
                .ok_or(ConversionError::Overflow)
        }
    }
}

#[cfg(feature = "chrono")]
impl TryInto<chrono::DateTime<chrono::Utc>> for SntpDateTime {
    type Error = ConversionError;

    fn try_into(self) -> Result<chrono::DateTime<chrono::Utc>, ConversionError> {
        let chrono_offset: chrono::Duration = self.offset.try_into()?;

        chrono::Utc::now()
            .checked_add_signed(chrono_offset)
            .ok_or(ConversionError::Overflow)
    }
}

#[cfg(feature = "time")]
impl TryInto<time::OffsetDateTime> for SntpDateTime {
    type Error = ConversionError;

    fn try_into(self) -> Result<time::OffsetDateTime, ConversionError> {
        let time_offset: time::Duration = self.offset.try_into()?;

        time::OffsetDateTime::now_utc()
            .checked_add(time_offset)
            .ok_or(ConversionError::Overflow)
    }
}

/// Results of a synchronization.
///
/// If you just simply need a fairly accurate SNTP time then check the `datetime()` method. Other methods
/// provide more detailed information about the outcome of the synchronization and might need deeper
/// knwoledge about  SNTP protocol internals.
#[derive(Debug, Clone)]
pub struct SynchronizationResult {
    clock_offset_s: f64,
    round_trip_delay_s: f64,
    reference_identifier: ReferenceIdentifier,
    leap_indicator: LeapIndicator,
    stratum: u8,
}

impl SynchronizationResult {
    pub(crate) fn new(
        clock_offset_s: f64,
        round_trip_delay_s: f64,
        reference_identifier: ReferenceIdentifier,
        leap_indicator: LeapIndicator,
        stratum: u8,
    ) -> SynchronizationResult {
        SynchronizationResult {
            clock_offset_s,
            round_trip_delay_s,
            reference_identifier,
            leap_indicator,
            stratum,
        }
    }

    /// Returns with the offset between server and local clock.
    ///
    /// It is a signed duration, negative value means the local clock is ahead.
    ///
    /// # Example
    ///
    /// Print the synchronized local time using clock offset:
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// println!("Clock offset: {}", result.clock_offset().as_secs_f64());
    /// ```
    pub fn clock_offset(&self) -> SntpDuration {
        SntpDuration::from_secs_f64(self.clock_offset_s)
    }

    /// Returns with the round trip delay
    ///
    /// The time is needed for SNTP packets to travel back and forth between the host and the server.
    /// It is a signed value but negative values should not be possible in client mode
    /// (which is currently always used by the library).
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// println!("RTT: {} ms", result.round_trip_delay().as_secs_f64() * 1000.0);
    /// ```
    pub fn round_trip_delay(&self) -> SntpDuration {
        SntpDuration::from_secs_f64(self.round_trip_delay_s)
    }

    /// Returns with the server reference identifier.
    ///
    /// This identifies the synchronizaion source of the server. For primary servers (startum = 1) this is a four
    /// byte ASCII string, for secondary IPv4 servers (startum >= 2) this is an IP address, for secondary IPv6
    /// servers this contains first 32 bits of an MD5 hash of an IPv6 address.
    ///   
    /// # Example
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// println!("Server reference identifier: {}", result.reference_identifier());
    /// ```
    pub fn reference_identifier(&self) -> &ReferenceIdentifier {
        &self.reference_identifier
    }

    /// Returns with the current UTC date and time, based on the synchronized SNTP timestamp.
    ///
    /// This is the current UTC date and time, calculated by adding clock offset the UTC time. To be accurate,
    /// use the returned value immediately.
    ///
    /// # Example
    ///
    /// Calcuating synchronized local time:
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// let unix_timetamp_utc = result.datetime().unix_timestamp().unwrap();
    /// ```
    pub fn datetime(&self) -> SntpDateTime {
        SntpDateTime::new(self.clock_offset())
    }

    /// Returns with the leap indicator
    ///
    /// This is the leap indicator returned by the server. It is a warning of an impending leap second to be
    /// inserted/deleted in the last minute of the current day.
    ///
    /// It is set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes
    /// the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
    ///
    /// # Example
    ///
    /// Printing leap indicator:
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// println!("Leap indicator: {:?}", result.leap_indicator());
    /// ```
    pub fn leap_indicator(&self) -> LeapIndicator {
        self.leap_indicator
    }

    /// Returns with the server stratum
    ///
    /// NTP uses a hierarchical, semi-layered system of time sources. Each level of this hierarchy is
    /// termed a stratum and is assigned a number starting with zero for the reference clock at the top.
    /// A server synchronized to a stratum n server runs at stratum n + 1
    ///
    /// Values defined as:
    /// *  1 - Primary reference (e.g., calibrated atomic clock, radio clock, etc...)
    /// *  2..15 - Secondary reference (via NTP, calculated as the stratum of system peer plus one)
    /// *  16 - Unsynchronized
    /// *  16..255 - Reserved
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rsntp::SntpClient;
    ///
    /// let client = SntpClient::new();
    /// let result = client.synchronize("pool.ntp.org").unwrap();
    ///
    /// assert!(result.stratum() >= 1);
    /// ```
    pub fn stratum(&self) -> u8 {
        self.stratum
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn sntp_duration_as_secs_f64_works() {
        let positive_duration = SntpDuration::from_secs_f64(3600.0);
        let negative_duration = SntpDuration::from_secs_f64(-3600.0);

        assert_eq!(positive_duration.as_secs_f64(), 3600.0);
        assert_eq!(negative_duration.as_secs_f64(), -3600.0);
    }

    #[test]
    fn sntp_duration_abs_and_signum_works() {
        let positive_duration = SntpDuration::from_secs_f64(3600.0);
        let negative_duration = SntpDuration::from_secs_f64(-3600.0);

        assert_eq!(
            positive_duration.abs_as_std_duration().unwrap(),
            std::time::Duration::from_secs(3600)
        );
        assert_eq!(
            negative_duration.abs_as_std_duration().unwrap(),
            std::time::Duration::from_secs(3600)
        );

        assert_eq!(positive_duration.signum(), 1);
        assert_eq!(negative_duration.signum(), -1);
    }

    #[test]
    fn sntp_duration_abs_fails_on_overflow() {
        let duration = SntpDuration::from_secs_f64(2e19);

        assert!(duration.abs_as_std_duration().is_err());
    }

    #[cfg(feature = "chrono")]
    #[test]
    fn sntp_duration_converting_to_chrono_duration_works() {
        let positive_duration = SntpDuration::from_secs_f64(3600.0);
        let negative_duration = SntpDuration::from_secs_f64(-3600.0);

        let positive_chrono: chrono::Duration = positive_duration.try_into().unwrap();
        let negative_chrono: chrono::Duration = negative_duration.try_into().unwrap();

        assert_eq!(positive_chrono, chrono::Duration::hours(1));
        assert_eq!(negative_chrono, chrono::Duration::hours(-1));
    }

    #[cfg(feature = "chrono")]
    #[test]
    fn sntp_duration_converting_to_chrono_duration_fails() {
        let nan_duration_result: Result<chrono::Duration, ConversionError> =
            SntpDuration::from_secs_f64(f64::NAN).try_into();

        assert!(nan_duration_result.is_err());
    }

    #[cfg(feature = "time")]
    #[test]
    fn sntp_duration_converting_to_time_duration_works() {
        let positive_duration = SntpDuration::from_secs_f64(3600.0);
        let negative_duration = SntpDuration::from_secs_f64(-3600.0);

        let positive_time: time::Duration = positive_duration.try_into().unwrap();
        let negative_time: time::Duration = negative_duration.try_into().unwrap();

        assert_eq!(positive_time, time::Duration::hours(1));
        assert_eq!(negative_time, time::Duration::hours(-1));
    }

    #[test]
    fn sntp_date_time_converting_to_system_time_works() {
        let now = std::time::SystemTime::now();
        let datetime = SntpDateTime::new(SntpDuration::from_secs_f64(3600.0));

        let systemtime_1 = datetime.into_system_time().unwrap();
        let systemtime_2 = now
            .checked_add(std::time::Duration::from_secs_f64(3600.0))
            .unwrap();

        assert_eq!(
            systemtime_1
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap()
                .as_millis(),
            systemtime_2
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap()
                .as_millis()
        );
    }

    #[cfg(feature = "chrono")]
    #[test]
    fn sntp_date_time_converting_to_chrono_datetime_works() {
        let datetime = SntpDateTime::new(SntpDuration::from_secs_f64(0.1));
        let converted: chrono::DateTime<chrono::Utc> = datetime.try_into().unwrap();
        let diff = converted - chrono::Utc::now();

        assert!(diff.num_milliseconds() > 90);
        assert!(diff.num_milliseconds() < 110);
    }

    #[cfg(feature = "chrono")]
    #[test]
    fn sntp_date_time_converting_to_chrono_datetime_fails_for_nan() {
        let datetime = SntpDateTime::new(SntpDuration::from_secs_f64(f64::NAN));
        let converted: Result<chrono::DateTime<chrono::Utc>, ConversionError> = datetime.try_into();

        assert!(converted.is_err());
    }

    #[cfg(feature = "time")]
    #[test]
    fn sntp_date_time_converting_to_time_offset_datetime_works() {
        let datetime = SntpDateTime::new(SntpDuration::from_secs_f64(0.1));
        let converted: time::OffsetDateTime = datetime.try_into().unwrap();
        let diff = converted - time::OffsetDateTime::now_utc();

        assert!(diff.whole_milliseconds() > 90);
        assert!(diff.whole_milliseconds() < 110);
    }
}