rp2040-hal 0.7.0

A Rust Embeded-HAL impl for the rp2040 microcontroller
Documentation
//! # PWM Blink Example
//!
//! If you have an LED connected to pin 25, it will fade the LED using the PWM
//! peripheral.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
//! See the `Cargo.toml` file for Copyright and license details.

#![no_std]
#![no_main]

// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;

// Alias for our HAL crate
use rp2040_hal as hal;

// Some traits we need
use embedded_hal::PwmPin;
use rp2040_hal::clocks::Clock;

// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;

/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
/// Note: This boot block is not necessary when using a rp-hal based BSP
/// as the BSPs already perform this step.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;

/// The minimum PWM value (i.e. LED brightness) we want
const LOW: u16 = 0;

/// The maximum PWM value (i.e. LED brightness) we want
const HIGH: u16 = 25000;

/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;

/// Entry point to our bare-metal application.
///
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables and the spinlock are initialised.
///
/// The function configures the RP2040 peripherals, then fades the LED in an
/// infinite loop.
#[rp2040_hal::entry]
fn main() -> ! {
    // Grab our singleton objects
    let mut pac = pac::Peripherals::take().unwrap();
    let core = pac::CorePeripherals::take().unwrap();

    // Set up the watchdog driver - needed by the clock setup code
    let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);

    // Configure the clocks
    //
    // The default is to generate a 125 MHz system clock
    let clocks = hal::clocks::init_clocks_and_plls(
        XTAL_FREQ_HZ,
        pac.XOSC,
        pac.CLOCKS,
        pac.PLL_SYS,
        pac.PLL_USB,
        &mut pac.RESETS,
        &mut watchdog,
    )
    .ok()
    .unwrap();

    // The single-cycle I/O block controls our GPIO pins
    let sio = hal::Sio::new(pac.SIO);

    // Set the pins up according to their function on this particular board
    let pins = hal::gpio::Pins::new(
        pac.IO_BANK0,
        pac.PADS_BANK0,
        sio.gpio_bank0,
        &mut pac.RESETS,
    );

    // The delay object lets us wait for specified amounts of time (in
    // milliseconds)
    let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());

    // Init PWMs
    let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);

    // Configure PWM4
    let pwm = &mut pwm_slices.pwm4;
    pwm.set_ph_correct();
    pwm.enable();

    // Output channel B on PWM4 to GPIO 25
    let channel = &mut pwm.channel_b;
    channel.output_to(pins.gpio25);

    // Infinite loop, fading LED up and down
    loop {
        // Ramp brightness up
        for i in (LOW..=HIGH).skip(100) {
            delay.delay_us(8);
            channel.set_duty(i);
        }

        // Ramp brightness down
        for i in (LOW..=HIGH).rev().skip(100) {
            delay.delay_us(8);
            channel.set_duty(i);
        }

        delay.delay_ms(500);
    }
}

// End of file