1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright (c) 2015, Mikhail Vorotilov
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
//   list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use super::super::FloatType;
use super::super::Roots;

/// Solves a normalized cubic equation x^3 + a2*x^2 + a1*x + a0 = 0.
///
/// Trigonometric solution (arccos/cos) is implemented for three roots.
///
/// In case more than one roots are present, they are returned in the increasing order.
///
/// # Examples
///
/// ```
/// use roots::find_roots_cubic_normalized;
///
/// let one_root = find_roots_cubic_normalized(0f64, 0f64, 0f64);
/// // Returns Roots::One([0f64]) as 'x^3 = 0' has one root 0
///
/// let three_roots = find_roots_cubic_normalized(0f32, -1f32, 0f32);
/// // Returns Roots::Three([-1f32, -0f32, 1f32]) as 'x^3 - x = 0' has roots -1, 0, and 1
/// ```
pub fn find_roots_cubic_normalized<F: FloatType>(a2: F, a1: F, a0: F) -> Roots<F> {
    let _2 = F::from(2i16);
    let _3 = F::from(3i16);
    let _4 = F::from(4i16);
    let _9 = F::from(9i16);
    let _18 = F::from(18i16);
    let _27 = F::from(27i16);
    let _54 = F::from(54i16);

    let q = (_3 * a1 - a2 * a2) / _9;
    let r = (_9 * a2 * a1 - _27 * a0 - _2 * a2 * a2 * a2) / _54;
    let q3 = q * q * q;
    let d = q3 + r * r;
    let a2_div_3 = a2 / _3;

    if d < F::zero() {
        let phi_3 = (r / (-q3).sqrt()).acos() / _3;
        let sqrt_q_2 = _2 * (-q).sqrt();

        Roots::One([sqrt_q_2 * phi_3.cos() - a2_div_3])
            .add_new_root(sqrt_q_2 * (phi_3 - F::two_third_pi()).cos() - a2_div_3)
            .add_new_root(sqrt_q_2 * (phi_3 + F::two_third_pi()).cos() - a2_div_3)
    } else {
        let sqrt_d = d.sqrt();
        let s = (r + sqrt_d).cbrt();
        let t = (r - sqrt_d).cbrt();

        if s == t {
            if s + t == F::zero() {
                Roots::One([s + t - a2_div_3])
            } else {
                Roots::One([s + t - a2_div_3]).add_new_root(-(s + t) / _2 - a2_div_3)
            }
        } else {
            Roots::One([s + t - a2_div_3])
        }
    }
}

#[cfg(test)]
mod test {
    use super::super::super::*;

    #[test]
    fn test_find_roots_cubic_normalized() {
        assert_eq!(find_roots_cubic_normalized(0f32, 0f32, 0f32), Roots::One([0f32]));

        match find_roots_cubic_normalized(0f64, -1f64, 0f64) {
            Roots::Three(x) => {
                assert_float_array_eq!(1e-15, x, [-1f64, 0f64, 1f64]);
            }
            _ => {
                assert!(false);
            }
        }

        match find_roots_cubic_normalized(1f64, -2f64, 2f64) {
            Roots::One(x) => {
                assert_float_array_eq!(1e-15, x, [-2.269530842081142770853135f64]);
            }
            _ => {
                assert!(false);
            }
        }

        match find_roots_cubic_normalized(0f64, -3f64, 2f64) {
            Roots::Two(x) => {
                assert_float_array_eq!(1e-15, x, [-2f64, 1f64]);
            }
            _ => {
                assert!(false);
            }
        }

        match find_roots_cubic_normalized(-2f64, -3f64, 2f64) {
            Roots::Three(x) => {
                assert_float_array_eq!(
                    1e-15,
                    x,
                    [
                        -1.342923082777170208054859f64,
                        0.5293165801288393926136314f64,
                        2.813606502648330815441228f64
                    ]
                );
            }
            _ => {
                assert!(false);
            }
        }
    }

    #[test]
    fn test_find_roots_cubic_normalized_huge_discriminant() {
        // Try to find roots of the cubic polynomial where the highest coefficient is very small
        // (as reported by Andrew Hunter in July 2019)
        match find_roots_cubic_normalized(
            0.0126298310280606f64 / -0.000000000000000040410628481035f64,
            -0.100896606408756f64 / -0.000000000000000040410628481035f64,
            0.0689539597036461f64 / -0.000000000000000040410628481035f64,
        ) {
            //Roots::Three(x) => {
            //    // (According to Wolfram Alpha, roots must be 0.7547108770537f64, 7.23404258961f64, 312537357195213f64)
            //    // These results are returned by find_roots_cubic (using complex numbers).
            //    assert_float_array_eq!(1e-8, x, [0.7583841816097057f64, 7.233267996296344f64, 312537357195212.9f64]);
            //}
            Roots::One(x) => {
                // (According to Wolfram Alpha, roots must be 0.7547108770537f64, 7.23404258961f64, 312537357195213f64)
                // Due to the limited precision of calculations of arccos, the function cannot cope with such numbers.
                assert_float_array_eq!(1e-8, x, [312537357195212.4625f64]);
            }
            _ => {
                assert!(false);
            }
        }
    }
}