1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright (c) 2015, Mikhail Vorotilov
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
//   list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use super::super::FloatType;
use super::super::Roots;

/// Solves a cubic equation a3*x^3 + a2*x^2 + a1*x + a0 = 0.
///
/// General formula (complex numbers) is implemented for three roots.
///
/// Note that very small values of a3 (comparing to other coefficients) will cause the loss of precision.
///
/// In case more than one roots are present, they are returned in the increasing order.
///
/// # Examples
///
/// ```
/// use roots::Roots;
/// use roots::find_roots_cubic;
///
/// let no_roots = find_roots_cubic(0f32, 1f32, 0f32, 1f32);
/// // Returns Roots::No([]) as 'x^2 + 1 = 0' has no roots
///
/// let one_root = find_roots_cubic(1f64, 0f64, 0f64, 0f64);
/// // Returns Roots::One([0f64]) as 'x^3 = 0' has one root 0
///
/// let three_roots = find_roots_cubic(1f32, 0f32, -1f32, 0f32);
/// // Returns Roots::Three([-1f32, 0f32, 1f32]) as 'x^3 - x = 0' has roots -1, 0, and 1
///
/// let three_roots_less_precision = find_roots_cubic(
///            -0.000000000000000040410628481035f64,
///            0.0126298310280606f64,
///            -0.100896606408756f64,
///            0.0689539597036461f64);
/// // Returns Roots::Three([0.7583841816097057f64, 7.233267996296344f64, 312537357195212.9f64])
/// // while online math expects 0.7547108770537f64, 7.23404258961f64, 312537357195213f64
/// ```
pub fn find_roots_cubic<F: FloatType>(a3: F, a2: F, a1: F, a0: F) -> Roots<F> {
    // Handle non-standard cases
    if a3 == F::zero() {
        // a3 = 0; a2*x^2+a1*x+a0=0; solve quadratic equation
        super::quadratic::find_roots_quadratic(a2, a1, a0)
    } else if a2 == F::zero() {
        // a2 = 0; a3*x^3+a1*x+a0=0; solve depressed cubic equation
        super::cubic_depressed::find_roots_cubic_depressed(a1 / a3, a0 / a3)
    } else if a3 == F::one() {
        // solve normalized cubic expression
        super::cubic_normalized::find_roots_cubic_normalized(a2, a1, a0)
    } else {
        let _2 = F::from(2i16);
        let _3 = F::from(3i16);
        let _4 = F::from(4i16);
        let _9 = F::from(9i16);
        let _18 = F::from(18i16);
        let _27 = F::from(27i16);

        // standard case
        let d = _18 * a3 * a2 * a1 * a0 - _4 * a2 * a2 * a2 * a0 + a2 * a2 * a1 * a1
            - _4 * a3 * a1 * a1 * a1
            - _27 * a3 * a3 * a0 * a0;
        let d0 = a2 * a2 - _3 * a3 * a1;
        let d1 = _2 * a2 * a2 * a2 - _9 * a3 * a2 * a1 + _27 * a3 * a3 * a0;
        if d < F::zero() {
            // one real root
            let sqrt = (-_27 * a3 * a3 * d).sqrt();
            let c = F::cbrt(if d1 < F::zero() { d1 - sqrt } else { d1 + sqrt } / _2);
            let x = -(a2 + c + d0 / c) / (_3 * a3);
            Roots::One([x])
        } else if d == F::zero() {
            // multiple roots
            if d0 == F::zero() {
                // triple root
                Roots::One([-a2 / (a3 * _3)])
            } else {
                // single root and double root
                Roots::One([(_9 * a3 * a0 - a2 * a1) / (d0 * _2)])
                    .add_new_root((_4 * a3 * a2 * a1 - _9 * a3 * a3 * a0 - a2 * a2 * a2) / (a3 * d0))
            }
        } else {
            // three real roots
            let c3_img = F::sqrt(_27 * a3 * a3 * d) / _2;
            let c3_real = d1 / _2;
            let c3_module = F::sqrt(c3_img * c3_img + c3_real * c3_real);
            let c3_phase = _2 * F::atan(c3_img / (c3_real + c3_module));
            let c_module = F::cbrt(c3_module);
            let c_phase = c3_phase / _3;
            let c_real = c_module * F::cos(c_phase);
            let c_img = c_module * F::sin(c_phase);
            let x0_real = -(a2 + c_real + (d0 * c_real) / (c_module * c_module)) / (_3 * a3);

            let e_real = -F::one() / _2;
            let e_img = F::sqrt(_3) / _2;
            let c1_real = c_real * e_real - c_img * e_img;
            let c1_img = c_real * e_img + c_img * e_real;
            let x1_real = -(a2 + c1_real + (d0 * c1_real) / (c1_real * c1_real + c1_img * c1_img)) / (_3 * a3);

            let c2_real = c1_real * e_real - c1_img * e_img;
            let c2_img = c1_real * e_img + c1_img * e_real;
            let x2_real = -(a2 + c2_real + (d0 * c2_real) / (c2_real * c2_real + c2_img * c2_img)) / (_3 * a3);

            Roots::One([x0_real]).add_new_root(x1_real).add_new_root(x2_real)
        }
    }
}

#[cfg(test)]
mod test {
    use super::super::super::*;

    #[test]
    fn test_find_roots_cubic() {
        assert_eq!(find_roots_cubic(1f32, 0f32, 0f32, 0f32), Roots::One([0f32]));

        match find_roots_cubic(1f64, 0f64, -1f64, 0f64) {
            Roots::Three(x) => {
                assert_float_array_eq!(1e-15, x, [-1f64, 0f64, 1f64]);
            }
            _ => {
                assert!(false);
            }
        }
    }

    #[test]
    fn test_find_roots_cubic_small_discriminant() {
        // Try to find roots of the cubic polynomial where the highest coefficient is very small
        // (as reported by Andrew Hunter in July 2019)
        match find_roots_cubic(
            -0.000000000000000040410628481035f64,
            0.0126298310280606f64,
            -0.100896606408756f64,
            0.0689539597036461f64,
        ) {
            Roots::Three(x) => {
                // (According to Wolfram Alpha, roots must be 0.7547108770537f64, 7.23404258961f64, 312537357195213f64)
                // Actual result differ a little due to the limited precision of calculations.
                assert_float_array_eq!(1e-8, x, [0.7583841816097057f64, 7.233267996296344f64, 312537357195212.9f64]);
            }
            _ => {
                assert!(false);
            }
        }
    }
}