1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use adler32::RollingAdler32;
use bitvec::prelude::*;
use std::collections::HashMap;

#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq)]
pub struct Match {
    pub pattern_index: usize,
    pub text_index: usize,
    pub length: usize,
}

struct RkrGst<'a> {
    pattern: &'a [u8],
    text: &'a [u8],
    pattern_mark: BitVec,
    text_mark: BitVec,
    matches: Vec<Match>,
    result: Vec<Match>,
}

impl<'a> RkrGst<'a> {
    fn scan_pattern(&mut self, search_length: usize) -> usize {
        // map text hashes => text index
        let mut map: HashMap<u32, Vec<usize>> = HashMap::new();
        let mut i = 0;
        while (i + search_length) <= self.text.len() {
            // jump to first unmarked token
            for j in i..(i + search_length) {
                if self.text_mark[j] {
                    i = j + 1;
                    break;
                }
            }
            if i + search_length > self.text.len() {
                break;
            }

            // text[i..i+search_length] is unmarked
            let mut hash = RollingAdler32::new();
            for j in i..(i + search_length) {
                hash.update(self.text[j]);
            }

            // advance until next marked
            loop {
                if self.text_mark[i + search_length - 1] {
                    break;
                }
                map.entry(hash.hash()).or_insert_with(Vec::new).push(i);
                i += 1;
                if i + search_length > self.text.len() {
                    break;
                }
                hash.remove(search_length, self.text[i - 1]);
                hash.update(self.text[i + search_length - 1]);
            }
        }

        // search patterns
        self.matches.clear();
        let mut max_match = 0;
        i = 0;
        while (i + search_length) <= self.pattern.len() {
            // jump to first unmarked token
            for j in i..(i + search_length) {
                if self.pattern_mark[j] {
                    i = j + 1;
                    break;
                }
            }
            if i + search_length > self.pattern.len() {
                break;
            }

            // pattern[i..i+search_length] is unmarked
            let mut hash = RollingAdler32::new();
            for j in i..(i + search_length) {
                hash.update(self.pattern[j]);
            }

            // advance until next marked
            loop {
                if self.pattern_mark[i + search_length - 1] {
                    break;
                }
                if map.contains_key(&hash.hash()) {
                    // found a match, check that it really matches
                    // and try to extend
                    for text_index in &map[&hash.hash()] {
                        let pattern_index = i;
                        let mut k = 0;
                        while *text_index + k < self.text.len()
                            && pattern_index + k < self.pattern.len()
                            && self.text[text_index + k] == self.pattern[pattern_index + k]
                            && !self.text_mark[text_index + k]
                            && !self.pattern_mark[pattern_index + k]
                        {
                            k += 1;
                        }

                        if k > 2 * search_length {
                            return k;
                        }

                        if k >= search_length {
                            self.matches.push(Match {
                                pattern_index,
                                text_index: *text_index,
                                length: k,
                            });
                            max_match = std::cmp::max(max_match, k);
                        }
                    }
                }

                i += 1;
                if i + search_length > self.pattern.len() {
                    break;
                }
                hash.remove(search_length, self.pattern[i - 1]);
                hash.update(self.pattern[i + search_length - 1]);
            }
        }

        max_match
    }

    fn mark_strings(&mut self) {
        // sort by length, desc
        self.matches.sort_by(|a, b| b.length.cmp(&a.length));
        for m in &self.matches {
            let mut unmarked = true;
            for i in 0..m.length {
                if self.text_mark[m.text_index + i] || self.pattern_mark[m.pattern_index + i] {
                    unmarked = false;
                    break;
                }
            }

            if unmarked {
                self.result.push(*m);
                for i in 0..m.length {
                    self.text_mark.set(m.text_index + i, true);
                    self.pattern_mark.set(m.pattern_index + i, true);
                }
            }
        }
        self.matches.clear();
    }
}

pub fn run(
    pattern: &[u8],
    text: &[u8],
    initial_search_length: usize,
    minimum_match_length: usize,
) -> Vec<Match> {
    let mut s = initial_search_length;
    let mut params = RkrGst {
        pattern,
        text,
        pattern_mark: bitvec![0; pattern.len()],
        text_mark: bitvec![0; text.len()],
        matches: vec![],
        result: vec![],
    };
    loop {
        // Lmax := scanpatterns(s)
        let lmax = params.scan_pattern(s);
        // if Lmax > 2 x s
        if lmax > 2 * s {
            // then s := Lmax
            s = lmax;
        } else {
            // markarrays(s)
            params.mark_strings();
            // if s > 2 x minimum_match_length
            if s > 2 * minimum_match_length {
                // s := s div 2
                s /= 2;
            } else if s > minimum_match_length {
                // else if s > minimum_match_length
                // s := minimum_match_length
                s = minimum_match_length;
            } else {
                // stop := true
                break;
            }
        }
    }

    params.result
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn simple_match() {
        assert_eq!(
            run("lower".as_bytes(), "yellow".as_bytes(), 3, 2),
            vec![Match {
                pattern_index: 0,
                text_index: 3,
                length: 3
            }]
        );
    }

    #[test]
    fn duplicate_match() {
        assert_eq!(
            run("lowerlow".as_bytes(), "yellow lowlow".as_bytes(), 3, 2),
            vec![
                Match {
                    pattern_index: 0,
                    text_index: 3,
                    length: 3
                },
                Match {
                    pattern_index: 5,
                    text_index: 7,
                    length: 3
                }
            ]
        );
    }
}