1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use machine::IntegerMachine;
use isa::{Instruction, OpCode, CsrField};
use memory::Memory;
use machine::rv32imc::{self, Machine as RV32I};
use std::collections::HashMap;

pub struct Machine {
    cores : [ RV32I ; 4 ],
    joining : [ i32 ; 4 ],
    current_core : usize,
    //threads : Vec<ThreadData>,
    active_threads : usize,
    cycles : i32,
    plt_addresses : HashMap<i32, String>,
}

impl Machine {
    pub fn new(plt:HashMap<i32, String>) -> Machine {
        let mut ret = Machine {
            cores : [ RV32I::new(), RV32I::new()
                    , RV32I::new(), RV32I::new() ],
            joining : [ -1 ; 4 ],
            current_core : 0,
            active_threads : 1,
            cycles : 0,
            plt_addresses : plt,
        };

        let mut i = 0;
        for core in &mut ret.cores {
            core.set_csr_field(CsrField::HartID, i);
            i += 1;
        }

        ret
    }

    fn schedule_next_core(&mut self) {
        let mut i = (self.current_core + 1) % self.active_threads;
        let mut num = 0;
        while (self.joining[i] != -1 || self.cores[i].get_pc() == 0) && num < self.active_threads {
            i = (i + 1) % self.active_threads;
            num += 1
        }
        self.cycles = 0;
        self.current_core = i;
    }

    fn do_write_back(&mut self) {
        self.cores[self.current_core].do_write_back()
    }

    fn do_mem(&mut self, mem:&mut dyn Memory) {
        self.cores[self.current_core].do_mem(mem)
    }

    fn do_execute(&mut self, mem:&mut dyn Memory) {
        let curr = self.current_core;
        let curr_pc = self.cores[curr].dc2ex.pc;
        let i = self.cores[curr].dc2ex.instruction;
        let address = curr_pc.wrapping_add(i.get_imm_j());

        if i.get_opcode() == OpCode::JAL.into() {
            
            if let Some(func_name) = self.plt_addresses.get(&address) {
                if func_name.contains("pthread_create") {
                    let i = self.active_threads as usize;
                    let npc = self.get_i_register(12);
                    self.active_threads += 1;
                    self.cores[i].set_pc(npc);
                    self.cores[i].set_i_register(1, 0);
                    self.cores[i].set_i_register(2, (-1024) * i as i32);
                    self.cores[i].set_i_register(8, (-1024) * i as i32);

                    mem.set_32(self.cores[curr].get_i_register(10) as usize, i as u32);
                    self.cores[curr].set_i_register(10, 0);
                    self.cores[curr].mem2wb = rv32imc::WriteBackData {
                        perform : false,
                        rd : 0,
                        value : 0,
                    };

                    //println!("[SIM] new thread on core {} at 0x{:x} (sp=s0={:x})", i, npc, (-1024) * i as i32)
                }
                else if func_name.contains("pthread_join") {
                    let to_wait = self.cores[curr].get_i_register(10);
                    self.joining[curr] = to_wait;
                    self.cores[curr].dc2ex.instruction = Instruction::addi(0, 0, 0);
                    self.schedule_next_core();
                    //println!("[SIM] thread {} waiting for {} to join", curr, to_wait)
                }
                else if func_name.contains("puts") {
                    let mut str_addr = self.get_i_register(10) as usize;
                    let mut byte = mem.get_8(str_addr); let mut s = String::new();
                    while byte != 0 {
                        byte = mem.get_8(str_addr);
                        s.push(byte as char);
                        str_addr += 1
                    }
                    println!("{}", s)
                }

                self.cores[self.current_core].ex2mem = rv32imc::MemData {
                    value: curr_pc.wrapping_add(4),
                    pc: curr_pc,
                    wb_perform: true,
                    wb_rd: i.get_rd() as usize,
                    perform: None, addr: 0, size: rv32imc::WordSize::B,
                }
            } else {
                self.cores[curr].do_execute()
            }
        } else {
            self.cores[curr].do_execute()
        }
    }

    fn do_decode(&mut self) {
        self.cores[self.current_core].do_decode()
    }

    fn do_fetch(&mut self, mem:&mut dyn Memory) {
        if self.cores[self.current_core].get_pc() == 0 {
            for i in 0..self.active_threads {
                if self.joining[i] == self.current_core as i32 {
                    self.joining[i] = -1;
                }
            }
        } else {
            self.cores[self.current_core].do_fetch(mem)
        }
    }
}

impl IntegerMachine for Machine {
    type IntegerType = i32;

    fn set_privilege(&mut self, _p : u8) { }
    fn get_privilege(&self) -> u8 { 0b11 }

    fn cycle(&mut self, mem:&mut dyn Memory) {
        self.cycles += 1;
        if self.cycles >= 10 {
            self.schedule_next_core()
        }

        self.do_write_back();
        self.do_mem(mem);
        self.do_execute(mem);
        self.do_decode();
        self.do_fetch(mem);
    }

    fn get_i_register(&self, i:usize) -> i32 {
        self.cores[self.current_core].get_register(i)
    }

    fn set_i_register(&mut self, i:usize, value:i32) {
        self.cores[self.current_core].set_register(i, value)
    }

    fn get_csr_field(&self, i:CsrField) -> i32 {
        self.cores[self.current_core].get_csr_field(i)
    }

    fn set_csr_field(&mut self, i:CsrField, value:i32) {
        self.cores[self.current_core].set_csr_field(i, value)
    }

    fn get_pc(&self) -> i32 { self.cores[self.current_core].get_pc() }
    fn set_pc(&mut self, value:i32) { self.cores[self.current_core].set_pc(value) }

    fn finished(&self) -> bool {
        for core in &self.cores {
            if !core.finished() { return false }
        }
        true
    }
}