1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use core::ops::{Index, IndexMut};

use crate::ringbuffer_trait::{RingBuffer, RingBufferExt, RingBufferRead, RingBufferWrite};

extern crate alloc;
// We need vecs so depend on alloc
use alloc::vec::Vec;
use core::iter::FromIterator;
use core::mem;
use core::mem::MaybeUninit;

/// The `AllocRingBuffer` is a `RingBufferExt` which is based on a Vec. This means it allocates at runtime
/// on the heap, and therefore needs the [`alloc`] crate. This struct and therefore the dependency on
/// alloc can be disabled by disabling the `alloc` (default) feature.
///
/// # Example
/// ```
/// use ringbuffer::{AllocRingBuffer, RingBuffer, RingBufferExt, RingBufferWrite};
///
/// let mut buffer = AllocRingBuffer::with_capacity(2);
///
/// // First entry of the buffer is now 5.
/// buffer.push(5);
///
/// // The last item we pushed is 5
/// assert_eq!(buffer.get(-1), Some(&5));
///
/// // Second entry is now 42.
/// buffer.push(42);
///
/// assert_eq!(buffer.peek(), Some(&5));
/// assert!(buffer.is_full());
///
/// // Because capacity is reached the next push will be the first item of the buffer.
/// buffer.push(1);
/// assert_eq!(buffer.to_vec(), vec![42, 1]);
/// ```
#[derive(Debug)]
pub struct AllocRingBuffer<T> {
    buf: Vec<MaybeUninit<T>>,
    capacity: usize,
    readptr: usize,
    writeptr: usize,
}

impl<T> Drop for AllocRingBuffer<T> {
    fn drop(&mut self) {
        self.drain().for_each(drop);
    }
}

impl<T: Clone> Clone for AllocRingBuffer<T> {
    fn clone(&self) -> Self {
        let mut new = Self::with_capacity(self.capacity);
        self.iter().cloned().for_each(|i| new.push(i));
        new
    }
}
impl<T: PartialEq> PartialEq for AllocRingBuffer<T> {
    fn eq(&self, other: &Self) -> bool {
        self.capacity == other.capacity
            && self.len() == other.len()
            && self
                .iter()
                .zip(other.iter())
                .fold(true, |p, (a, b)| p && a == b)
    }
}

impl<T: Eq + PartialEq> Eq for AllocRingBuffer<T> {}

/// The capacity of a `RingBuffer` created by new or default (`1024`).
// must be a power of 2
pub const RINGBUFFER_DEFAULT_CAPACITY: usize = 1024;

impl<T> RingBufferExt<T> for AllocRingBuffer<T> {
    impl_ringbuffer_ext!(
        get_unchecked,
        get_unchecked_mut,
        readptr,
        writeptr,
        crate::mask
    );

    #[inline]
    fn fill_with<F: FnMut() -> T>(&mut self, mut f: F) {
        self.clear();

        self.readptr = 0;
        self.writeptr = self.capacity;
        self.buf.fill_with(|| MaybeUninit::new(f()));
        while self.buf.len() < self.capacity {
            self.buf.push(MaybeUninit::new(f()));
        }
    }
}

impl<T> RingBufferRead<T> for AllocRingBuffer<T> {
    fn dequeue(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            let index = crate::mask(self.capacity, self.readptr);
            let res = mem::replace(&mut self.buf[index], MaybeUninit::uninit());
            self.readptr += 1;

            // Safety: the fact that we got this maybeuninit from the buffer (with mask) means that
            // it's initialized. If it wasn't the is_empty call would have caught it. Values
            // are always initialized when inserted so this is safe.
            unsafe { Some(res.assume_init()) }
        }
    }

    impl_ringbuffer_read!();
}

impl<T> Extend<T> for AllocRingBuffer<T> {
    fn extend<A: IntoIterator<Item = T>>(&mut self, iter: A) {
        let iter = iter.into_iter();

        for i in iter {
            self.push(i)
        }
    }
}

impl<T> RingBufferWrite<T> for AllocRingBuffer<T> {
    #[inline]
    fn push(&mut self, value: T) {
        if self.is_full() {
            let previous_value = mem::replace(
                &mut self.buf[crate::mask(self.capacity, self.readptr)],
                MaybeUninit::uninit(),
            );
            // make sure we drop whatever is being overwritten
            // SAFETY: the buffer is full, so this must be initialized
            //       : also, index has been masked
            // make sure we drop because it won't happen automatically
            unsafe {
                drop(previous_value.assume_init());
            }

            self.readptr += 1;
        }

        let index = crate::mask(self.capacity, self.writeptr);

        if index >= self.buf.len() {
            // initializing the maybeuninit when values are inserted/pushed
            self.buf.push(MaybeUninit::new(value));
        } else {
            // initializing the maybeuninit when values are inserted/pushed
            self.buf[index] = MaybeUninit::new(value);
        }

        self.writeptr += 1;
    }
}

impl<T> RingBuffer<T> for AllocRingBuffer<T> {
    #[inline]
    fn capacity(&self) -> usize {
        self.capacity
    }

    impl_ringbuffer!(readptr, writeptr);
}

impl<T> AllocRingBuffer<T> {
    /// Creates a `AllocRingBuffer` with a certain capacity. This capacity is fixed.
    /// for this ringbuffer to work, cap must be a power of two and greater than zero.
    #[inline]
    pub fn with_capacity_unchecked(cap: usize) -> Self {
        Self {
            buf: Vec::with_capacity(cap),
            capacity: cap,
            readptr: 0,
            writeptr: 0,
        }
    }

    /// Creates a `AllocRingBuffer` with a certain capacity. The actual capacity is the input to the
    /// function raised to the power of two (effectively the input is the log2 of the actual capacity)
    #[inline]
    pub fn with_capacity_power_of_2(cap_power_of_two: usize) -> Self {
        Self::with_capacity_unchecked(cap_power_of_two.pow(2))
    }

    #[inline]
    /// Creates a `AllocRingBuffer` with a certain capacity. The capacity must be a power of two.
    /// # Panics
    /// Panics when capacity is zero or not a power of two
    pub fn with_capacity(cap: usize) -> Self {
        assert_ne!(cap, 0, "Capacity must be greater than 0");
        assert!(cap.is_power_of_two(), "Capacity must be a power of two");

        Self::with_capacity_unchecked(cap)
    }

    /// Creates an `AllocRingBuffer` with a capacity of [`RINGBUFFER_DEFAULT_CAPACITY`].
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Get a reference from the buffer without checking it is initialized.
    /// Caller must be sure the index is in bounds, or this will panic.
    #[inline]
    unsafe fn get_unchecked(&self, index: usize) -> &T {
        let p = &self.buf[index];
        // Safety: caller makes sure the index is in bounds for the ringbuffer.
        // All in bounds values in the ringbuffer are initialized
        p.assume_init_ref()
    }

    /// Get a mut reference from the buffer without checking it is initialized.
    /// Caller must be sure the index is in bounds, or this will panic.
    #[inline]
    unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
        let p = &mut self.buf[index];

        // Safety: caller makes sure the index is in bounds for the ringbuffer.
        // All in bounds values in the ringbuffer are initialized
        p.assume_init_mut()
    }
}

impl<RB> FromIterator<RB> for AllocRingBuffer<RB> {
    fn from_iter<T: IntoIterator<Item = RB>>(iter: T) -> Self {
        let mut res = Self::default();
        for i in iter {
            res.push(i)
        }

        res
    }
}

impl<T> Default for AllocRingBuffer<T> {
    /// Creates a buffer with a capacity of [`crate::RINGBUFFER_DEFAULT_CAPACITY`].
    #[inline]
    fn default() -> Self {
        Self {
            buf: Vec::with_capacity(RINGBUFFER_DEFAULT_CAPACITY),
            capacity: RINGBUFFER_DEFAULT_CAPACITY,
            readptr: 0,
            writeptr: 0,
        }
    }
}

impl<T> Index<isize> for AllocRingBuffer<T> {
    type Output = T;

    fn index(&self, index: isize) -> &Self::Output {
        self.get(index).expect("index out of bounds")
    }
}

impl<T> IndexMut<isize> for AllocRingBuffer<T> {
    fn index_mut(&mut self, index: isize) -> &mut Self::Output {
        self.get_mut(index).expect("index out of bounds")
    }
}

#[cfg(test)]
mod tests {
    use super::alloc::vec::Vec;
    use crate::{
        AllocRingBuffer, RingBuffer, RingBufferExt, RingBufferWrite, RINGBUFFER_DEFAULT_CAPACITY,
    };

    #[test]
    fn test_default() {
        let b: AllocRingBuffer<u32> = AllocRingBuffer::default();
        assert_eq!(RINGBUFFER_DEFAULT_CAPACITY, b.capacity());
        assert_eq!(RINGBUFFER_DEFAULT_CAPACITY, b.buf.capacity());
        assert_eq!(b.capacity, b.capacity());
        assert_eq!(b.buf.len(), b.len());
        assert_eq!(0, b.writeptr);
        assert_eq!(0, b.readptr);
        assert!(b.is_empty());
        assert!(b.buf.is_empty());
        assert_eq!(0, b.iter().count());
        assert_eq!(
            Vec::<u32>::with_capacity(RINGBUFFER_DEFAULT_CAPACITY),
            b.to_vec()
        );
    }

    #[test]
    fn test_default_capacity_constant() {
        // This is to prevent accidentally changing it.
        assert_eq!(RINGBUFFER_DEFAULT_CAPACITY, 1024)
    }

    #[test]
    fn test_with_capacity_power_of_two() {
        let b = AllocRingBuffer::<i32>::with_capacity_power_of_2(2);
        assert_eq!(b.capacity, 4);
    }

    #[test]
    #[should_panic]
    fn test_with_capacity_no_power_of_two() {
        let _ = AllocRingBuffer::<i32>::with_capacity(10);
    }

    #[test]
    #[should_panic]
    fn test_index_zero_length() {
        let b = AllocRingBuffer::<i32>::with_capacity(2);
        let _ = b[2];
    }

    #[test]
    fn test_extend() {
        let mut buf = AllocRingBuffer::<u8>::with_capacity(4);
        (0..4).for_each(|_| buf.push(0));

        let new_data = [0, 1, 2];
        buf.extend(new_data);

        let expected = [0, 0, 1, 2];

        for i in 0..4 {
            let actual = buf[i as isize];
            let expected = expected[i];
            assert_eq!(actual, expected);
        }
    }

    #[test]
    fn test_extend_with_overflow() {
        let mut buf = AllocRingBuffer::<u8>::with_capacity(8);
        (0..8).for_each(|_| buf.push(0));

        let new_data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        buf.extend(new_data);

        let expected = [2, 3, 4, 5, 6, 7, 8, 9];

        for i in 0..8 {
            let actual = buf[i as isize];
            let expected = expected[i];
            assert_eq!(actual, expected);
        }
    }
}