1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use crate::{RingBuffer, RingBufferExt, RingBufferRead, RingBufferWrite};
use core::iter::FromIterator;
use core::mem;
use core::mem::MaybeUninit;
use core::ops::{Index, IndexMut};

/// The `ConstGenericRingBuffer` struct is a `RingBuffer` implementation which does not require `alloc` but
/// uses const generics instead.
///
/// [`ConstGenericRingBuffer`] allocates the ringbuffer on the stack, and the size must be known at
/// compile time through const-generics.
///
/// # Example
/// ```
/// use ringbuffer::{ConstGenericRingBuffer, RingBuffer, RingBufferExt, RingBufferWrite};
///
/// let mut buffer = ConstGenericRingBuffer::<_, 2>::new();
///
/// // First entry of the buffer is now 5.
/// buffer.push(5);
///
/// // The last item we pushed is 5
/// assert_eq!(buffer.get(-1), Some(&5));
///
/// // Second entry is now 42.
/// buffer.push(42);
///
/// assert_eq!(buffer.peek(), Some(&5));
/// assert!(buffer.is_full());
///
/// // Because capacity is reached the next push will be the first item of the buffer.
/// buffer.push(1);
/// assert_eq!(buffer.to_vec(), vec![42, 1]);
/// ```
#[derive(Debug)]
pub struct ConstGenericRingBuffer<T, const CAP: usize> {
    buf: [MaybeUninit<T>; CAP],
    readptr: usize,
    writeptr: usize,
}

impl<T, const CAP: usize> Drop for ConstGenericRingBuffer<T, CAP> {
    fn drop(&mut self) {
        self.drain().for_each(drop);
    }
}

impl<T: Clone, const CAP: usize> Clone for ConstGenericRingBuffer<T, CAP> {
    fn clone(&self) -> Self {
        let mut new = ConstGenericRingBuffer::<T, CAP>::new();
        self.iter().cloned().for_each(|i| new.push(i));
        new
    }
}

// We need to manually implement PartialEq because MaybeUninit isn't PartialEq
impl<T: PartialEq, const CAP: usize> PartialEq for ConstGenericRingBuffer<T, CAP> {
    fn eq(&self, other: &Self) -> bool {
        if self.len() == other.len() {
            for (a, b) in self.iter().zip(other.iter()) {
                if a != b {
                    return false;
                }
            }
            true
        } else {
            false
        }
    }
}

impl<T: PartialEq, const CAP: usize> Eq for ConstGenericRingBuffer<T, CAP> {}

impl<T, const CAP: usize> ConstGenericRingBuffer<T, CAP> {
    /// Creates a new `RingBuffer`. This method simply creates a default ringbuffer. The capacity is given as a
    /// type parameter.
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Get a reference from the buffer without checking it is initialized
    /// Caller MUST be sure this index is initialized, or undefined behavior will happen
    unsafe fn get_unchecked(&self, index: usize) -> &T {
        self.buf[index]
            .as_ptr()
            .as_ref()
            .expect("const array ptr shouldn't be null!")
    }

    /// Get a mutable reference from the buffer without checking it is initialized
    /// Caller MUST be sure this index is initialized, or undefined behavior will happen
    unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T {
        self.buf[index]
            .as_mut_ptr()
            .as_mut()
            .expect("const array ptr shouldn't be null!")
    }
}

impl<T, const CAP: usize> RingBufferRead<T> for ConstGenericRingBuffer<T, CAP> {
    fn dequeue(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            let index = crate::mask(CAP, self.readptr);
            let res = mem::replace(&mut self.buf[index], MaybeUninit::uninit());
            self.readptr += 1;

            // Safety: the fact that we got this maybeuninit from the buffer (with mask) means that
            // it's initialized. If it wasn't the is_empty call would have caught it. Values
            // are always initialized when inserted so this is safe.
            unsafe { Some(res.assume_init()) }
        }
    }

    impl_ringbuffer_read!();
}

impl<T, const CAP: usize> Extend<T> for ConstGenericRingBuffer<T, CAP> {
    fn extend<A: IntoIterator<Item = T>>(&mut self, iter: A) {
        let iter = iter.into_iter();

        for i in iter {
            self.push(i)
        }
    }
}

impl<T, const CAP: usize> RingBufferWrite<T> for ConstGenericRingBuffer<T, CAP> {
    #[inline]
    fn push(&mut self, value: T) {
        if self.is_full() {
            let previous_value = mem::replace(
                &mut self.buf[crate::mask(CAP, self.readptr)],
                MaybeUninit::uninit(),
            );
            // make sure we drop whatever is being overwritten
            // SAFETY: the buffer is full, so this must be initialized
            //       : also, index has been masked
            // make sure we drop because it won't happen automatically
            unsafe {
                drop(previous_value.assume_init());
            }
            self.readptr += 1;
        }
        let index = crate::mask(CAP, self.writeptr);
        self.buf[index] = MaybeUninit::new(value);
        self.writeptr += 1;
    }
}

impl<T, const CAP: usize> RingBufferExt<T> for ConstGenericRingBuffer<T, CAP> {
    impl_ringbuffer_ext!(
        get_unchecked,
        get_unchecked_mut,
        readptr,
        writeptr,
        crate::mask
    );

    #[inline]
    fn fill_with<F: FnMut() -> T>(&mut self, mut f: F) {
        self.clear();
        self.readptr = 0;
        self.writeptr = CAP;
        self.buf.fill_with(|| MaybeUninit::new(f()));
    }
}

impl<T, const CAP: usize> RingBuffer<T> for ConstGenericRingBuffer<T, CAP> {
    #[inline]
    #[cfg(not(tarpaulin_include))]
    fn capacity(&self) -> usize {
        CAP
    }

    impl_ringbuffer!(readptr, writeptr);
}

impl<T, const CAP: usize> Default for ConstGenericRingBuffer<T, CAP> {
    /// Creates a buffer with a capacity specified through the Cap type parameter.
    /// # Panics
    /// Panics if `CAP` is 0 or not a power of two
    #[inline]
    fn default() -> Self {
        assert_ne!(CAP, 0, "Capacity must be greater than 0");
        assert!(CAP.is_power_of_two(), "Capacity must be a power of two");

        let arr = array_init::array_init(|_| MaybeUninit::uninit());

        Self {
            buf: arr,
            writeptr: 0,
            readptr: 0,
        }
    }
}

impl<RB, const CAP: usize> FromIterator<RB> for ConstGenericRingBuffer<RB, CAP> {
    fn from_iter<T: IntoIterator<Item = RB>>(iter: T) -> Self {
        let mut res = Self::default();
        for i in iter {
            res.push(i)
        }

        res
    }
}

impl<T, const CAP: usize> Index<isize> for ConstGenericRingBuffer<T, CAP> {
    type Output = T;

    fn index(&self, index: isize) -> &Self::Output {
        self.get(index).expect("index out of bounds")
    }
}

impl<T, const CAP: usize> IndexMut<isize> for ConstGenericRingBuffer<T, CAP> {
    fn index_mut(&mut self, index: isize) -> &mut Self::Output {
        self.get_mut(index).expect("index out of bounds")
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn test_no_empty() {
        let _ = ConstGenericRingBuffer::<u32, 0>::new();
    }

    #[test]
    #[should_panic]
    fn test_with_capacity_no_power_of_two() {
        let _ = ConstGenericRingBuffer::<i32, 10>::new();
    }

    #[test]
    #[should_panic]
    fn test_index_zero_length() {
        let b = ConstGenericRingBuffer::<i32, 2>::new();
        let _ = b[2];
    }

    #[test]
    fn test_extend() {
        let mut buf = ConstGenericRingBuffer::<u8, 4>::new();
        (0..4).for_each(|_| buf.push(0));

        let new_data = [0, 1, 2];
        buf.extend(new_data);

        let expected = [0, 0, 1, 2];

        for i in 0..4 {
            let actual = buf[i as isize];
            let expected = expected[i];
            assert_eq!(actual, expected);
        }
    }

    #[test]
    fn test_extend_with_overflow() {
        let mut buf = ConstGenericRingBuffer::<u8, 8>::new();
        (0..8).for_each(|_| buf.push(0));

        let new_data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        buf.extend(new_data);

        let expected = [2, 3, 4, 5, 6, 7, 8, 9];

        for i in 0..8 {
            let actual = buf[i as isize];
            let expected = expected[i];
            assert_eq!(actual, expected);
        }
    }
}