1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
pub mod element;

use element::{PrimIntElement, RugElement};
use num_traits::{PrimInt, WrappingMul};
use twoword::TwoWord;
pub trait Field<T: Redc> {
    fn redc(&self, value: T::SourceType) -> T;
}

pub trait Redc: Sized {
    type SourceType;
    type FieldType;

    fn setup_field(self) -> Self::FieldType;
    fn to_montgomery(self, field: &Self::FieldType) -> Self;
    fn to_montgomery_unchecked(self, field: &Self::FieldType) -> Self;
    fn to_normal(self, field: &Self::FieldType) -> Self;
    fn mod_pow(self, exponent: Self, field: &Self::FieldType) -> Self;
}

/// Using hensel lifting to calculate `prime_inverse` for `prime_inverse` * prime = -1 mod R
/// With R being 2**(bits of T)
fn p_calc_prime_inverse<T>(prime: T) -> T
where
    T: PrimInt + std::fmt::Display + WrappingMul + std::ops::ShlAssign + std::ops::BitOrAssign,
{
    let two = T::one() + T::one();
    assert!(
        prime % two != T::zero(),
        "Prime {} needs to be coprime to base 2**x, but is not (cannot be divisible by 2)",
        prime
    );
    let mut last_power = two;
    let mut current_power = two + two;
    let mut prime_inv_mod = T::one();
    let mut mod_mask = current_power - T::one();

    while last_power != T::zero() {
        let prime_mod = prime & mod_mask;
        if prime_mod.wrapping_mul(&prime_inv_mod) & mod_mask != mod_mask {
            prime_inv_mod |= last_power;
        }

        last_power = current_power;
        current_power <<= T::one();
        mod_mask <<= T::one();
        mod_mask |= T::one();
    }
    prime_inv_mod
}

fn p_calc_r_squared_u64(prime: u64) -> u64 {
    let r_mod = ((u64::MAX % prime) + 1) % prime;
    let r_squared = (<u64 as Redc>::SourceType::from(r_mod)
        * <u64 as Redc>::SourceType::from(r_mod))
        % <u64 as Redc>::SourceType::from(prime);
    #[allow(clippy::cast_possible_truncation)]
    {
        r_squared as u64
    }
}

impl PrimIntField<u64> {
    // Convert to montgomery representation, and use a wrapper to do arithmetic without needing to do manual redc operations
    pub fn wrap_element(&self, element: u64) -> PrimIntElement<'_, u64> {
        PrimIntElement::new(element.to_montgomery(self), self)
    }
    pub fn raw_element(&self, element: u64) -> PrimIntElement<'_, u64> {
        PrimIntElement::new(element, self)
    }
}

impl Field<u64> for PrimIntField<u64> {
    fn redc(&self, value: <u64 as Redc>::SourceType) -> u64 {
        let prime_bits = u64::MAX.count_ones();
        let value_mod_r = value % (1 << prime_bits);
        let value_times_n_prime =
            value_mod_r * <u64 as Redc>::SourceType::from(self.prime_inverted);
        let m = value_times_n_prime % (1 << prime_bits);
        let m_times_prime = m * (<u64 as Redc>::SourceType::from(self.prime));
        let (mut tw, carry) = m_times_prime.overflowing_add(value);
        tw /= 1 << prime_bits;
        if carry {
            tw += 1 << prime_bits;
        }
        if tw >= <u64 as Redc>::SourceType::from(self.prime) {
            tw -= <u64 as Redc>::SourceType::from(self.prime);
        }
        #[allow(clippy::cast_possible_truncation)]
        {
            tw as u64
        }
    }
}

impl Redc for u64 {
    type SourceType = u128;
    type FieldType = PrimIntField<Self>;

    fn setup_field(self) -> Self::FieldType {
        Self::FieldType {
            prime: self,
            prime_inverted: p_calc_prime_inverse(self),
            r_squared: p_calc_r_squared_u64(self),
        }
    }

    fn to_montgomery_unchecked(self, field: &Self::FieldType) -> Self {
        debug_assert!(self <= field.prime);
        field.redc(Self::SourceType::from(self) * Self::SourceType::from(field.r_squared))
    }

    fn to_montgomery(self, field: &Self::FieldType) -> Self {
        (self % field.prime).to_montgomery_unchecked(field)
    }

    fn to_normal(self, field: &Self::FieldType) -> Self {
        field.redc(Self::SourceType::from(self))
    }

    fn mod_pow(self, mut exponent: Self, field: &Self::FieldType) -> Self {
        let mut power = self;
        let mut result = if exponent % 2 == 0 {
            1u64.to_montgomery_unchecked(field)
        } else {
            self
        };
        exponent >>= 1;
        while exponent != 0 {
            power = field.redc(u128::from(power) * u128::from(power));
            if exponent % 2 == 1 {
                result = field.redc(u128::from(result) * u128::from(power));
            }
            exponent >>= 1;
        }
        result
    }
}

fn p_calc_r_squared_u128(prime: u128) -> u128 {
    let r_mod = ((u128::MAX % prime) + 1) % prime;
    let r_squared =
        (<u128 as Redc>::SourceType::mult(r_mod, r_mod)) % <u128 as Redc>::SourceType::from(prime);
    r_squared.lower
}

impl Redc for u128 {
    type SourceType = TwoWord<Self>;
    type FieldType = PrimIntField<Self>;

    fn setup_field(self) -> Self::FieldType {
        Self::FieldType {
            prime: self,
            prime_inverted: p_calc_prime_inverse(self),
            r_squared: p_calc_r_squared_u128(self),
        }
    }

    fn to_montgomery_unchecked(self, field: &Self::FieldType) -> Self {
        debug_assert!(self <= field.prime);
        field.redc(Self::SourceType::from(self) * Self::SourceType::from(field.r_squared))
    }

    fn to_montgomery(self, field: &Self::FieldType) -> Self {
        (self % field.prime).to_montgomery_unchecked(field)
    }

    fn to_normal(self, field: &Self::FieldType) -> Self {
        field.redc(Self::SourceType {
            higher: 0,
            lower: self,
        })
    }

    fn mod_pow(self, mut exponent: Self, field: &Self::FieldType) -> Self {
        let mut power = self;
        let mut result = if exponent % 2 == 0 {
            1u128.to_montgomery_unchecked(field)
        } else {
            self
        };
        exponent >>= 1;
        while exponent != 0 {
            power = field.redc(Self::SourceType::mult(power, power));
            if exponent % 2 == 1 {
                result = field.redc(Self::SourceType::mult(result, power));
            }
            exponent >>= 1;
        }
        result
    }
}

impl PrimIntField<u128> {
    // Convert to montgomery representation, and use a wrapper to do arithmetic without needing to do manual redc operations
    pub fn wrap_element(&self, element: u128) -> PrimIntElement<'_, u128> {
        PrimIntElement::new(element.to_montgomery(self), self)
    }
    pub fn raw_element(&self, element: u128) -> PrimIntElement<'_, u128> {
        PrimIntElement::new(element, self)
    }
}

impl Field<u128> for PrimIntField<u128> {
    fn redc(&self, value: <u128 as Redc>::SourceType) -> u128 {
        use num_traits::ops::overflowing::OverflowingAdd;

        let value_mod_r = value.lower;
        let value_times_n_prime =
            <u128 as Redc>::SourceType::mult(value_mod_r, self.prime_inverted);
        let m = value_times_n_prime.lower;
        let m_times_prime = <u128 as Redc>::SourceType::mult(m, self.prime);
        let (tw, carry) = m_times_prime.overflowing_add(&value);
        let mut tw_higher = tw.higher;
        if carry {
            tw_higher += u128::MAX - self.prime + 1;
        } else if tw_higher >= self.prime {
            tw_higher -= self.prime;
        }
        tw_higher
    }
}

fn rug_calc_prime_inverse(prime: rug::Integer) -> rug::Integer {
    assert!(
        prime.clone() % 2 != 0,
        "Prime {:#?} needs to be coprime to base 2**x, but is not (cannot be divisible by 2)",
        prime
    );
    let mut last_power = rug::Integer::from(2);
    let mut current_power = rug::Integer::from(4);
    let mut prime_inv_mod = rug::Integer::from(1);
    let mut mod_mask = rug::Integer::from(0b11);
    let r = prime.clone().next_power_of_two();
    while last_power != r {
        let prime_mod = prime.clone() & mod_mask.clone();
        if (prime_mod * prime_inv_mod.clone()) & mod_mask.clone() != mod_mask.clone() {
            prime_inv_mod |= last_power;
        }

        last_power = current_power.clone();
        current_power <<= 1;
        mod_mask <<= 1;
        mod_mask |= 1;
    }
    prime_inv_mod
}

impl RugField {
    // Convert to montgomery representation, and use a wrapper to do arithmetic without needing to do manual redc operations
    pub fn wrap_element(&self, element: rug::Integer) -> RugElement<'_> {
        RugElement::new(element.to_montgomery(self), self)
    }
}

impl Field<rug::Integer> for RugField {
    fn redc(&self, value: <rug::Integer as Redc>::SourceType) -> rug::Integer {
        let tw = ((((value.clone().keep_bits(self.r_count)) * &self.prime_inverted)
            .keep_bits(self.r_count))
            * &self.prime
            + value)
            >> self.r_count;
        if tw >= self.prime {
            tw - &self.prime
        } else {
            tw
        }
    }
}

impl Redc for rug::Integer {
    type SourceType = Self;
    type FieldType = RugField;

    fn setup_field(self) -> Self::FieldType {
        let r = self.clone().next_power_of_two();
        let r_count = r.find_one(0).unwrap();
        let r_squared = r.square() % &self;
        Self::FieldType {
            prime: self.clone(),
            prime_inverted: rug_calc_prime_inverse(self),
            r_squared,
            r_count,
        }
    }

    fn to_montgomery_unchecked(self, field: &Self::FieldType) -> Self {
        debug_assert!(self <= field.prime);
        field.redc(self * &field.r_squared)
    }

    fn to_montgomery(self, field: &Self::FieldType) -> Self {
        field.redc((self % &field.prime) * &field.r_squared)
    }

    fn to_normal(self, field: &Self::FieldType) -> Self {
        field.redc(self)
    }

    fn mod_pow(self, mut exponent: Self, field: &Self::FieldType) -> Self {
        let mut result = if exponent.clone() % 2 == 0 {
            Self::from(1).to_montgomery_unchecked(field)
        } else {
            self.clone()
        };
        let mut power = self;
        exponent >>= 1;
        while exponent != 0 {
            power = field.redc(power.square());
            if exponent.clone() % 2 == 1 {
                result = field.redc(result * power.clone());
            }
            exponent >>= 1;
        }
        result
    }
}

#[derive(Debug, Clone)]
pub struct RugField {
    prime: rug::Integer,
    prime_inverted: rug::Integer,
    r_squared: rug::Integer,
    r_count: u32,
}

#[derive(Debug, Clone)]
pub struct PrimIntField<T> {
    prime: T,
    prime_inverted: T,
    r_squared: T,
}

#[cfg(test)]
mod tests {
   use super::p_calc_prime_inverse;
#[test]
fn test_prime_inverse() {
    assert_eq!(p_calc_prime_inverse(23u64), 3_208_129_404_123_400_281);
}
}