recrypt
A pureRust library that implements a set of cryptographic primitives for building a multihop Proxy Reencryption scheme, known as Transform Encryption.
What is Transform Encryption?
Suppose you have two (public, private) key pairs: (A, AA) and (B, BB).
Transform Encryption allows data encrypted to one public key (A) to be transformed so that it can be decrypted using another user's private key (BB). This transformation process requires a special transform key (A > B) that is computed using the first user's private key (AA) and the second user's public key (B). Having a transform key and performing the transformation does not allow the person doing this process to decrypt the data or to recover either user's private key.
See the Singlehop Transform Encryption Example for more details on computing a transform key and applying a transform using recrypt.
Usage
If you are building an application and would like to use Transform Encryption, you might try looking at the IronCore SDKs.
Rust Dependency
See https://crates.io/crates/recrypt for the most recent version.
Other bindings
In addition to the native Rust implementation, we provide additional bindings to Recrypt:
A Scala implementation of recrypt is also available.
API Documentation and Example Usage
Security and Audits
The Scala version of recrypt has been audited by NCC group. This implementation was based on that version, but has not been independently audited and should be used at your own risk.
To learn more about our approach to cryptography and to read our publications, please go here.
Contributing
Building
Rust (stable) is required.
$ cargo build
Running Tests
$ cargo test
Running benchmarks
$ cargo bench
Relation to Proxy ReEncryption
In the academic literature, transform encryption is referred to as proxy reencryption. A proxy reencryption (PRE) scheme is a publickey encryption scheme, where each participant has a pair of related keys, one public and one private, which are mathematically related. Alice encrypts a message to Bob using his public key, and Bob decrypts the encrypted message using his public key to retrieve the original message.
PRE allows someone (the delegator) to delegate the ability to decrypt her messages to another person (the delegatee). Rather than just sharing her private key with the delegatee, the delegator computes a transform key (or reencryption key) that allows messages encrypted to her public key to be transformed so they appear can be decrypted using the delegatee's private key. Computing this transform key requires the delegator's private key and the delegatee's public key; once it is computed, the key is stored on a semitrusted proxy.
When the proxy receives a message encrypted to the delegator, it applies the transform algorithm using the transform key and delivers the transformed message to the delegatee. The proxy does not need to be trusted, because possession of the transform key does not allow the proxy to decrypt the message or to recover any information about either the delegator's or the delegatee's private keys, even if it collaborates with the delegatee.
When the delegator no longer wants to allow access, she just requests that the proxy discard the transform key. She must trust the proxy to perform this action.
PRE Scheme Properties
There are a number of ways to categorize PRE schemes; some of the most important are the following:
 Directionality describes whether delegate from A to B also allows transformation from B to A. Unidirectional schemes do not allow this.
 Interactivity describes whether both parties must be actively involved in order to generate the transform key. A noninteractive scheme only requires the public key of the delegatee.
 Transitivity describes whether a proxy can redelegate encryption. That is, if the proxy holds a transform key from A to B and a transform key from B to C, can it generate a transform key from a to C? A nontransitive scheme does not allow this.
 Collusion safety describes whether it is possible for a delegatee to collude with the proxy that holds a transform key to that delegatee in order to recover the private key of the delegator. A collusionsafe scheme does not allow this.
 Multihop describes whether it is possible to allow a delegatee to also be a delegator. That is, does the scheme allow a ciphertext that has already been transformed from Alice to Bob to subsequently be transformed from Bob to Carol. In a multihop situation, the proxies would chain the transformations, so any delegatee in the chain could decrypt any message that one of her delegators could decrypt.
The Recrypt library implements a PRE scheme that is unidirectional, noninteractive, nontransitive, collusionsafe, and multihop.
Algorithms
The PRE algorithm implemented here was originally suggested in a short paper titled "A Fully Secure Unidirectional and Multiuser Proxy Reencryption Scheme" by H. Wang and Z. Cao, published in the proceedings of the ACM Conference on Computer and Communications Security (CCS) in 2009. The algorithm was enhanced in a paper titled "A MultiUser CCASecure Proxy ReEncryption Scheme" by Y. Cai and X. Liu, published in the proceedings of the IEEE 12th International Conference on Dependable, Autonomic, and Secure Computing in 2014.
We provide a synopsis of the algorithms, along with a description of how they can be used to implement an access control system, in the paper "Cryptographically Enforced Orthogonal Access Control at Scale" by B. Wall and P. Walsh, published in SCC '18, the proceedings of the 6th International Workshop on Security in Cloud Computing in 2018.
The algorithms in these papers were very generic and made no implementation choices. They specified only the use of a bilinear pairing function. We made a number of implementation choices. Foremost, we use the optimal Ate pairing as our pairing function. This requires a "pairingfriendly" elliptic curve; we chose a BarretoNaehrig curve, which supports efficient implementation of the pairing.
Our implementation was guided by the following papers:

"PairingFriendly Elliptic Curves of Prime Order" by P.S.L.M. Barreto and M. Naehrig, published in Proceedings of the 12th International Workshop on Selected Areas in Cryptography (SAC), 2006, pp. 319331.

"Constructing Tower Extensions of Finite Fields for Implementation of PairingBased Cryptography" by N. Benger and M. Scott, published in Proceedings of the 3rd International Workshop on Arithmetic of Finite Fields, 2010, pp. 180195.

"HighSpeed Software Implementation of the Optimal Ate Pairing over BarretoNaehrig Curves" by J. Beuchat et al., published in Proceedings from the 4th International Conference on PairingBased Cryptography, 2010, pp. 2139.

"Implementing Cryptographic Pairings over BarretoNaehrig Curves" by A. J. Devegili et al., published in Proceedings from the 1st International Conference on PairingBased Cryptography, 2007, pp. 197207.

"Multiplication and Squaring on PairingFriendly Fields" by A. J. Devegili et al., published in 2006 and available at http://eprint.iacr.org/2006/471.

"Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions" by R. Granger and M. Scott, published in Proceedings from the 13th International Conferencee on Practice and Theory in Public Key Cryptography (PKC), 2010, pp. 209223.

"Multiplication of Multidigit Numbers on Automata" by A. Karatsuba and Y. Ofman, in the journal Soviet Physics Doklady, vol. 7, Jan. 1963.

"New Software Speed Records for Cryptographic Pairings" by M. Naehrig, R. Niederhagen, and P. Schwabe, in Proceedings of the 1st International Conference on Progress in Cryptology and Information Security in Latin America (LATINCRYPT), 2010, pp. 109123.

"On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves" by M. Scott et al., published in Proceedings of the 3rd International Converence on PairingBased Cryptography (PKC), 2009, pp. 7888.
And by the book: Guide to PairingBased Cryptography by N.E. Mrabet and M. Joye, Chapman and Hall/CRC Cryptography and Network Security Series, 2016.
License
Recryptrust is licensed under the GNU Affero General Public License. We also offer commercial licenses  email for more information.
Copyright (c) 2018present IronCore Labs, Inc. All rights reserved.