1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#![crate_name="rchunks"]
#![warn(missing_docs)]

//! rchunks - a simple method for right-to-left non-overlapping windows of a slice.
//!
//! This crate's methods differ from .chunks().rev() in how it handles slices that
//! are not a multiple of the chunk size: with .chunks().rev() the smaller lot will
//! come from the *end* of the slice, whereas with .rchunks() the smaller lot will 
//! come from the *beginning*.
//!
//! To use this crate, import the `RChunks` trait.
//!
//! ```ignore
//! use rchunks::RChunks;
//! ```

use std::iter::{DoubleEndedIterator, ExactSizeIterator};

#[doc(hidden)]
pub struct RChunksIter<'a, T: 'a> {
    v: &'a [T],
    size: usize,
}

impl<'a, T> Iterator for RChunksIter<'a, T> {
    type Item = &'a [T];

    fn next(&mut self) -> Option<&'a [T]> {
        if self.v.is_empty() {
            None
        } else {
            let (head, tail) = self.v.split_at(self.v.len().saturating_sub(self.size));
            self.v = head;
            Some(tail)
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (quo, rem) = (self.v.len() / self.size, self.v.len() % self.size);

        if rem == 0 {
            (quo, Some(quo))
        } else {
            (quo + 1, Some(quo + 1))
        }
    }
}

impl<'a, T> ExactSizeIterator for RChunksIter<'a, T> {
    fn len(&self) -> usize {
        self.size_hint().0
    }
}

impl<'a, T> DoubleEndedIterator for RChunksIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        if self.v.is_empty() {
            None
        } else {
            let rem = self.v.len() % self.size;
            if rem == 0 {
                let (head, tail) = self.v.split_at(self.size);
                self.v = tail;
                Some(head)
            } else {
                let (head, tail) = self.v.split_at(rem);
                self.v = tail;
                Some(head)
            }
        }
    }
}

#[doc(hidden)]
pub struct RChunksMutIter<'a, T: 'a> {
    v: &'a mut [T],
    size: usize,
}

impl<'a, T> Iterator for RChunksMutIter<'a, T> {
    type Item = &'a mut [T];

    fn next(&mut self) -> Option<&'a mut [T]> {
        if self.v.is_empty() {
            None
        } else {
            let sz = self.v.len().saturating_sub(self.size);
            let tmp = std::mem::replace(&mut self.v, &mut []);
            let (head, tail) = tmp.split_at_mut(sz);
            self.v = head;
            Some(tail)
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (quo, rem) = (self.v.len() / self.size, self.v.len() % self.size);

        if rem == 0 {
            (quo, Some(quo))
        } else {
            (quo + 1, Some(quo + 1))
        }
    }
}

impl<'a, T> DoubleEndedIterator for RChunksMutIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        if self.v.is_empty() {
            None
        } else {
            let rem = self.v.len() % self.size;
            if rem == 0 {
                let tmp = std::mem::replace(&mut self.v, &mut []);
                let (head, tail) = tmp.split_at_mut(self.size);
                self.v = tail;
                Some(head)
            } else {
                let tmp = std::mem::replace(&mut self.v, &mut []);
                let (head, tail) = tmp.split_at_mut(rem);
                self.v = tail;
                Some(head)
            }
        }
    }
}

impl<'a, T> ExactSizeIterator for RChunksMutIter<'a, T> {
    fn len(&self) -> usize {
        self.size_hint().0
    }
}

/// The `RChunks` trait.
///
/// This trait provides two methods on slices: rchunks and rchunks_mut. Both take a usize as input for the chunk size,
/// see the method documentations for exact behavior and usage.
pub trait RChunks {

    /// This type is the type of the contents of the underlying slice: Item = T for [T].
    type Item;

    /// Returns an iterator over `size` elements of the slice at a time, starting from
    /// the end of the slice and working backwards. The chunks are slices and do not overlap.
    /// if `size` does not evenly divide the length of the slice, then the final chunk produced
    /// by this iterator will have a length less than `size`.
    ///
    /// # Panic
    ///
    /// Panics if `size` is 0.
    ///
    /// # Example
    ///
    /// ```
    /// use rchunks::RChunks;
    ///
    /// let slice = &['d', 'a', 'n', 'k', 'm', 'e', 'm', 'e'];
    /// let mut iter = slice.rchunks(3);
    /// assert_eq!(iter.next().unwrap(), &['e', 'm', 'e']);
    /// assert_eq!(iter.next().unwrap(), &['n', 'k', 'm']);
    /// assert_eq!(iter.next().unwrap(), &['d', 'a']);
    /// assert!(iter.next().is_none());
    /// ```
    fn rchunks<'a>(&'a self, size: usize) -> RChunksIter<'a, Self::Item>;

    /// Returns an iterator over `size` elements of the slice at a time, starting from
    /// the end of the slice and working backwards. The chunks are mutable slices and do not overlap.
    /// if `size` does not evenly divide the length of the slice, then the final chunk produced
    /// by this iterator will have a length less than `size`.
    ///
    /// # Panic
    ///
    /// Panics if `size` is 0.
    ///
    /// # Example
    ///
    /// ```
    /// use rchunks::RChunks;
    ///
    /// let slice = &mut [0;10];
    /// {
    /// let mut iter = slice.rchunks_mut(3);
    /// let mut counter = 0;
    /// for chunk in iter {
    ///     for elem in chunk {
    ///         *elem = counter;
    ///     }
    ///     counter += 1;    
    /// }
    /// }
    /// assert_eq!(slice, &[3, 2, 2, 2, 1, 1, 1, 0, 0, 0])
    /// ```
    fn rchunks_mut<'a>(&'a mut self, size: usize) -> RChunksMutIter<'a, Self::Item>;
}

impl<T> RChunks for [T] {
    type Item = T;
    #[inline]
    fn rchunks<'a>(&'a self, size: usize) -> RChunksIter<'a, Self::Item> {
        assert!(size != 0, "Size passed to rchunks must be non-zero");
        RChunksIter {
            v: self,
            size: size,
        }
    }
    #[inline]
    fn rchunks_mut<'a>(&'a mut self, size: usize) -> RChunksMutIter<'a, Self::Item> {
        assert!(size != 0, "Size passed to rchunks_mut must be non-zero");
        RChunksMutIter {
            v: self,
            size: size,
        }
    }
}

#[test]
#[should_panic]
fn rchunks_test_0() {
    let _s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    let mut _s_iter = _s.rchunks(0);
}

#[test]
fn rchunks_test_1() {
    let s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    let mut s_iter = s.rchunks(3);

    assert_eq!(s_iter.next().unwrap(), &[7usize, 8, 9]);
    assert_eq!(s_iter.next().unwrap(), &[4usize, 5, 6]);
    assert_eq!(s_iter.next().unwrap(), &[1usize, 2, 3]);
    assert_eq!(s_iter.next().unwrap(), &[0usize]);
    assert!(s_iter.next().is_none());
}

#[test]
fn rchunks_double_ended_test() {
    let s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    let mut s_iter = s.rchunks(3);

    assert_eq!(s_iter.next_back().unwrap(), &[0usize]);
    assert_eq!(s_iter.next().unwrap(), &[7usize, 8, 9]);
    assert_eq!(s_iter.next_back().unwrap(), &[1usize, 2, 3]);
    assert_eq!(s_iter.next().unwrap(), &[4usize, 5, 6]);
    assert!(s_iter.next().is_none());
}

#[test]
fn rchunks_size_hint_test() {
    let s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    assert_eq!(s.rchunks(3).size_hint(), (4, Some(4)));
}

#[test]
#[should_panic]
fn rchunks_mut_test_0() {
    let mut _s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    let mut _s_iter = _s.rchunks_mut(0);
}

#[test]
fn rchunks_mut_test_1() {
    let mut s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    let mut s_iter = s.rchunks_mut(3);

    assert_eq!(s_iter.next().unwrap(), &[7usize, 8, 9]);
    assert_eq!(s_iter.next().unwrap(), &[4usize, 5, 6]);
    assert_eq!(s_iter.next().unwrap(), &[1usize, 2, 3]);
    assert_eq!(s_iter.next().unwrap(), &[0usize]);
    assert!(s_iter.next().is_none());
}

#[test]
fn rchunks_mut_double_ended_test() {
    let mut s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    let mut s_iter = s.rchunks_mut(3);

    assert_eq!(s_iter.next_back().unwrap(), &[0usize]);
    assert_eq!(s_iter.next().unwrap(), &[7usize, 8, 9]);
    assert_eq!(s_iter.next_back().unwrap(), &[1usize, 2, 3]);
    assert_eq!(s_iter.next().unwrap(), &[4usize, 5, 6]);
    assert!(s_iter.next().is_none());
}

#[test]
fn rchunks_mut_size_hint_test() {
    let mut s = vec![0usize, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    assert_eq!(s.rchunks_mut(3).size_hint(), (4, Some(4)));
}