1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/// Rayon extensions to `HashMap`
use rayon::iter::{FromParallelIterator, IntoParallelIterator, ParallelExtend, ParallelIterator};
use std::hash::{BuildHasher, Hash};

use super::table;
use crate::HashMap;

pub use self::table::{ParIntoIter, ParIter, ParIterMut};
pub use self::table::{ParKeys, ParValues, ParValuesMut};

impl<K: Sync, V, S> HashMap<K, V, S> {
    pub fn par_keys(&self) -> ParKeys<K, V> {
        self.table.par_keys()
    }
}

impl<K, V: Sync, S> HashMap<K, V, S> {
    pub fn par_values(&self) -> ParValues<K, V> {
        self.table.par_values()
    }
}

impl<K, V: Send, S> HashMap<K, V, S> {
    pub fn par_values_mut(&mut self) -> ParValuesMut<K, V> {
        self.table.par_values_mut()
    }
}

impl<K, V, S> HashMap<K, V, S>
where
    K: Eq + Hash + Sync,
    V: PartialEq + Sync,
    S: BuildHasher + Sync,
{
    pub fn par_eq(&self, other: &Self) -> bool {
        self.len() == other.len() && self
            .into_par_iter()
            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
    }
}

impl<K: Send, V: Send, S> IntoParallelIterator for HashMap<K, V, S> {
    type Item = (K, V);
    type Iter = ParIntoIter<K, V>;

    fn into_par_iter(self) -> Self::Iter {
        self.table.into_par_iter()
    }
}

impl<'a, K: Sync, V: Sync, S> IntoParallelIterator for &'a HashMap<K, V, S> {
    type Item = (&'a K, &'a V);
    type Iter = ParIter<'a, K, V>;

    fn into_par_iter(self) -> Self::Iter {
        self.table.into_par_iter()
    }
}

impl<'a, K: Sync, V: Send, S> IntoParallelIterator for &'a mut HashMap<K, V, S> {
    type Item = (&'a K, &'a mut V);
    type Iter = ParIterMut<'a, K, V>;

    fn into_par_iter(self) -> Self::Iter {
        self.table.into_par_iter()
    }
}

/// Collect (key, value) pairs from a parallel iterator into a
/// hashmap. If multiple pairs correspond to the same key, then the
/// ones produced earlier in the parallel iterator will be
/// overwritten, just as with a sequential iterator.
impl<K, V, S> FromParallelIterator<(K, V)> for HashMap<K, V, S>
where
    K: Eq + Hash + Send,
    V: Send,
    S: BuildHasher + Default + Send,
{
    fn from_par_iter<P>(par_iter: P) -> Self
    where
        P: IntoParallelIterator<Item = (K, V)>,
    {
        let mut map = HashMap::default();
        map.par_extend(par_iter);
        map
    }
}

/// Extend a hash map with items from a parallel iterator.
impl<K, V, S> ParallelExtend<(K, V)> for HashMap<K, V, S>
where
    K: Eq + Hash + Send,
    V: Send,
    S: BuildHasher + Send,
{
    fn par_extend<I>(&mut self, par_iter: I)
    where
        I: IntoParallelIterator<Item = (K, V)>,
    {
        extend(self, par_iter);
    }
}

/// Extend a hash map with copied items from a parallel iterator.
impl<'a, K, V, S> ParallelExtend<(&'a K, &'a V)> for HashMap<K, V, S>
where
    K: Copy + Eq + Hash + Send + Sync,
    V: Copy + Send + Sync,
    S: BuildHasher + Send,
{
    fn par_extend<I>(&mut self, par_iter: I)
    where
        I: IntoParallelIterator<Item = (&'a K, &'a V)>,
    {
        extend(self, par_iter);
    }
}

// This is equal to the normal `HashMap` -- no custom advantage.
fn extend<K, V, S, I>(map: &mut HashMap<K, V, S>, par_iter: I)
where
    K: Eq + Hash,
    S: BuildHasher,
    I: IntoParallelIterator,
    HashMap<K, V, S>: Extend<I::Item>,
{
    let (list, len) = super::collect(par_iter);

    // Keys may be already present or show multiple times in the iterator.
    // Reserve the entire length if the map is empty.
    // Otherwise reserve half the length (rounded up), so the map
    // will only resize twice in the worst case.
    let reserve = if map.is_empty() { len } else { (len + 1) / 2 };
    map.reserve(reserve);
    for vec in list {
        map.extend(vec);
    }
}

#[cfg(test)]
mod test_par_map {
    use super::HashMap;
    use rayon::prelude::*;
    use std::hash::{Hash, Hasher};
    use std::sync::atomic::{AtomicUsize, Ordering};

    struct Dropable<'a> {
        k: usize,
        counter: &'a AtomicUsize,
    }

    impl<'a> Dropable<'a> {
        fn new(k: usize, counter: &AtomicUsize) -> Dropable {
            counter.fetch_add(1, Ordering::Relaxed);

            Dropable {
                k: k,
                counter: counter,
            }
        }
    }

    impl<'a> Drop for Dropable<'a> {
        fn drop(&mut self) {
            self.counter.fetch_sub(1, Ordering::Relaxed);
        }
    }

    impl<'a> Clone for Dropable<'a> {
        fn clone(&self) -> Dropable<'a> {
            Dropable::new(self.k, self.counter)
        }
    }

    impl<'a> Hash for Dropable<'a> {
        fn hash<H>(&self, state: &mut H)
        where
            H: Hasher,
        {
            self.k.hash(state)
        }
    }

    impl<'a> PartialEq for Dropable<'a> {
        fn eq(&self, other: &Self) -> bool {
            self.k == other.k
        }
    }

    impl<'a> Eq for Dropable<'a> {}

    #[test]
    fn test_into_iter_drops() {
        let key = AtomicUsize::new(0);
        let value = AtomicUsize::new(0);

        let hm = {
            let mut hm = HashMap::new();

            assert_eq!(key.load(Ordering::Relaxed), 0);
            assert_eq!(value.load(Ordering::Relaxed), 0);

            for i in 0..100 {
                let d1 = Dropable::new(i, &key);
                let d2 = Dropable::new(i + 100, &value);
                hm.insert(d1, d2);
            }

            assert_eq!(key.load(Ordering::Relaxed), 100);
            assert_eq!(value.load(Ordering::Relaxed), 100);

            hm
        };

        // By the way, ensure that cloning doesn't screw up the dropping.
        drop(hm.clone());

        {
            assert_eq!(key.load(Ordering::Relaxed), 100);
            assert_eq!(value.load(Ordering::Relaxed), 100);

            // retain only half
            let _v: Vec<_> = hm
                .into_par_iter()
                .filter(|&(ref key, _)| key.k < 50)
                .collect();

            assert_eq!(key.load(Ordering::Relaxed), 50);
            assert_eq!(value.load(Ordering::Relaxed), 50);
        };

        assert_eq!(key.load(Ordering::Relaxed), 0);
        assert_eq!(value.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn test_empty_iter() {
        let mut m: HashMap<isize, bool> = HashMap::new();
        //assert_eq!(m.par_drain().count(), 0);
        assert_eq!(m.par_keys().count(), 0);
        assert_eq!(m.par_values().count(), 0);
        assert_eq!(m.par_values_mut().count(), 0);
        assert_eq!(m.par_iter().count(), 0);
        assert_eq!(m.par_iter_mut().count(), 0);
        assert_eq!(m.len(), 0);
        assert!(m.is_empty());
        assert_eq!(m.into_par_iter().count(), 0);
    }

    #[test]
    fn test_iterate() {
        let mut m = HashMap::with_capacity(4);
        for i in 0..32 {
            assert!(m.insert(i, i * 2).is_none());
        }
        assert_eq!(m.len(), 32);

        let observed = AtomicUsize::new(0);

        m.par_iter().for_each(|(k, v)| {
            assert_eq!(*v, *k * 2);
            observed.fetch_or(1 << *k, Ordering::Relaxed);
        });
        assert_eq!(observed.into_inner(), 0xFFFF_FFFF);
    }

    #[test]
    fn test_keys() {
        let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
        let map: HashMap<_, _> = vec.into_par_iter().collect();
        let keys: Vec<_> = map.par_keys().cloned().collect();
        assert_eq!(keys.len(), 3);
        assert!(keys.contains(&1));
        assert!(keys.contains(&2));
        assert!(keys.contains(&3));
    }

    #[test]
    fn test_values() {
        let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
        let map: HashMap<_, _> = vec.into_par_iter().collect();
        let values: Vec<_> = map.par_values().cloned().collect();
        assert_eq!(values.len(), 3);
        assert!(values.contains(&'a'));
        assert!(values.contains(&'b'));
        assert!(values.contains(&'c'));
    }

    #[test]
    fn test_values_mut() {
        let vec = vec![(1, 1), (2, 2), (3, 3)];
        let mut map: HashMap<_, _> = vec.into_par_iter().collect();
        map.par_values_mut().for_each(|value| *value = (*value) * 2);
        let values: Vec<_> = map.par_values().cloned().collect();
        assert_eq!(values.len(), 3);
        assert!(values.contains(&2));
        assert!(values.contains(&4));
        assert!(values.contains(&6));
    }

    #[test]
    fn test_eq() {
        let mut m1 = HashMap::new();
        m1.insert(1, 2);
        m1.insert(2, 3);
        m1.insert(3, 4);

        let mut m2 = HashMap::new();
        m2.insert(1, 2);
        m2.insert(2, 3);

        assert!(!m1.par_eq(&m2));

        m2.insert(3, 4);

        assert!(m1.par_eq(&m2));
    }

    #[test]
    fn test_from_iter() {
        let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];

        let map: HashMap<_, _> = xs.par_iter().cloned().collect();

        for &(k, v) in &xs {
            assert_eq!(map.get(&k), Some(&v));
        }
    }

    #[test]
    fn test_extend_ref() {
        let mut a = HashMap::new();
        a.insert(1, "one");
        let mut b = HashMap::new();
        b.insert(2, "two");
        b.insert(3, "three");

        a.par_extend(&b);

        assert_eq!(a.len(), 3);
        assert_eq!(a[&1], "one");
        assert_eq!(a[&2], "two");
        assert_eq!(a[&3], "three");
    }
}