1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
#![forbid(unsafe_code)]
#![doc(html_root_url = "https://docs.rs/range_union_find/0.3.0")]

//! Provides a data structure backed by a vector for unioning ranges of integers.
//! We intelligently merge inserted ranges to minimize required storage.
//! 
//! Example usage:
//! ```
//! # use range_union_find::*;
//! let mut range_holder = IntRangeUnionFind::<u32>::new();
//! range_holder.insert_range(&(4..=8))?;
//! range_holder.insert_range(&(6..=10))?;
//! assert_eq!(range_holder.has_range(&(2..=12))?, OverlapType::Partial(7));
//! assert_eq!(range_holder.has_range(&(5..=9))?, OverlapType::Contained);
//! # Ok::<(), RangeOperationError>(())
//! ```
//! 
//! All the functionality is in the [`IntRangeUnionFind`] struct (though we may add `RangeUnionFind` structs for different element types in the future).
use std::ops::{Bound, RangeBounds, RangeInclusive};
use std::ops::{BitOr, Sub, BitAnd, Not, BitXor};
use std::cmp::{min, max};
use num_traits::PrimInt;
use sorted_vec::SortedVec;
use std::iter::FromIterator;

use std::fmt;

use std::error::Error;

/// Enum describing how a range may be invalid.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum RangeOperationError {
    /// Range operation caused an overflow.
    WouldOverflow,
    /// Range is decreasing or empty.
    IsDecreasingOrEmpty
}
impl fmt::Display for RangeOperationError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let description_str = match self {
            RangeOperationError::WouldOverflow =>
                "range normalization would overflow type",
            RangeOperationError::IsDecreasingOrEmpty =>
                "range has no elements"
        };
        write!(f, "{}", description_str)
    }
}
impl Error for RangeOperationError {}

/// Enum describing what location an element has in a range.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum ContainedType {
    /// Element is outside a range.
    Exterior,
    /// Element is at the beginning of a range.
    Start,
    /// Element is in the middle of a range.
    Interior,
    /// Element is at the end of a range.
    End
}
/// Enum describing how a range may overlap with another range.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum OverlapType<T: PrimInt> {
    /// Range does not overlap at all.
    Disjoint,
    /// Range overlaps partially, with parameter being overlap count.
    Partial(T),
    /// Range is contained in the data structure.
    Contained
}

// Normalized = verified increasing + inclusive ends
fn get_normalized_range<T, U>(range: &U) -> Result<(T, T), RangeOperationError>
where
    T: PrimInt,
    U: RangeBounds<T>
{
    let start = match range.start_bound() {
        Bound::Included(val) => *val,
        Bound::Excluded(val) => match *val == T::max_value() {
            true => return Err(RangeOperationError::WouldOverflow),
            false => *val+T::one()
        }
        Bound::Unbounded => T::min_value()
    };
    let end = match range.end_bound() {
        Bound::Included(val) => *val,
        Bound::Excluded(val) => match *val == T::min_value() {
            true => return Err(RangeOperationError::WouldOverflow),
            false => *val-T::one()
        }
        Bound::Unbounded => T::max_value()
    };
    if start > end {
        Err(RangeOperationError::IsDecreasingOrEmpty)
    } else {
        Ok((start, end))
    }
}

#[inline]
fn get_result_wrapped_val<T>(res: Result<T,T>) -> T {
    match res {
        Ok(val) => val,
        Err(val) => val
    }
}

#[derive(Default, Clone, PartialEq, Eq, Hash)]
/*
 * Stores ranges in the following form:
 * range_storage [a_1, b_1, a_2, b_2, ...]
 * Ranges are [a_i, b_i] and include both ends
 * assert always b_i < a_{i+1}; ranges are disjoint
 * We also assume ranges are always as optimized as possible
 */
/// Struct representing a union of integer ranges.
pub struct IntRangeUnionFind<T>
where
    T: PrimInt
{
    range_storage: SortedVec<T>,
}

impl<T> IntRangeUnionFind<T>
where
    T: PrimInt
{
    /// Constructs a new [`IntRangeUnionFind`] object.
    pub fn new() -> Self {
        IntRangeUnionFind {
            range_storage: SortedVec::new(),
        }
    }

    /// Clears all the ranges stored in this object.
    pub fn clear(&mut self) {
        self.range_storage.clear();
    }

    /// Returns a tuple describing the range the element is in, as well as its location.
    /// The range_id is a count of which range the element is in.
    /// The enum indicates where the element is in the range, with
    /// `(Exterior,i)` meaning the exterior region before the i'th range.
    /// See [`ContainedType`] for an explanation of the enum values.
    /// 
    /// If the element is in a single-element range of the form `a..=a`,
    /// the enum will not be `Exterior`, but its exact value is otherwise unspecified.
    ///
    /// # Example
    ///
    /// ```
    /// # use range_union_find::*;
    /// let mut range_obj = IntRangeUnionFind::new();
    /// range_obj.insert_range(&(10..20));
    /// assert_eq!(range_obj.has_element_enum(&0),
    ///     (ContainedType::Exterior, 0));
    /// assert_eq!(range_obj.has_element_enum(&10),
    ///     (ContainedType::Start, 0));
    /// assert_eq!(range_obj.has_element_enum(&15),
    ///     (ContainedType::Interior, 0));
    /// assert_eq!(range_obj.has_element_enum(&19),
    ///     (ContainedType::End, 0));
    /// assert_eq!(range_obj.has_element_enum(&25),
    ///     (ContainedType::Exterior, 1));
    /// ```
    /// 
    /// ```
    /// # use range_union_find::*;
    /// let mut range_obj = IntRangeUnionFind::new();
    /// range_obj.insert_range(&(8..=8));
    /// let (contain_enum, contain_id) = range_obj.has_element_enum(&8);
    /// assert_ne!(contain_enum, ContainedType::Exterior);
    /// assert_eq!(contain_id, 0);
    /// ```
    pub fn has_element_enum(&self, element: &T) -> (ContainedType, usize) {
        assert!(self.range_storage.len() % 2 == 0);
        /*
         * Ok(pos) -> element in list -> endpoint
         * Err(pos) -> element not in list -> strictly inside or outside
         */
        let would_insert_loc = self.range_storage.binary_search(element);
        let enum_val = match would_insert_loc {
            Ok(pos) => match pos % 2 {
                0 => ContainedType::Start,
                1 => ContainedType::End,
                _ => unreachable!()
            },
            Err(pos) => match pos % 2 {
                0 => ContainedType::Exterior,
                1 => ContainedType::Interior,
                _ => unreachable!()
            }
        };
        // Range id => indexes into vector are id*2, id*2+1
        // Using round-down division here
        (enum_val, get_result_wrapped_val(would_insert_loc)/2)
    }
    /// Returns whether the element is contained in the stored ranges.
    /// Returns `false` when [`Self::has_element_enum`] returns a
    /// [`ContainedType::Exterior`] enum, and `true` otherwise.
    pub fn has_element(&self, element: &T) -> bool {
        !matches!(self.has_element_enum(element),
            (ContainedType::Exterior, _))
    }

    // Returns whether the given range_id is a singleton of the form `a..=a`.
    fn is_range_singleton(&self, range_id: usize) -> Option<bool> {
        let (start, end) = match self.range_storage.get(2*range_id..=2*range_id+1) {
            None => return None,
            Some([a, b]) => (a, b),
            _ => unreachable!()
        };
        Some(start == end)
    }

    /// Returns how the given range overlaps with the stored ranges.
    /// See [`OverlapType`] for a description of the enum values.
    /// 
    /// # Example
    ///
    /// ```
    /// # use range_union_find::*;
    /// let mut range_obj = IntRangeUnionFind::new();
    /// range_obj.insert_range(&(10..20));
    /// range_obj.insert_range(&(-20..-10));
    /// assert_eq!(range_obj.has_range(&(15..17))?,
    ///     OverlapType::Contained);
    /// assert_eq!(range_obj.has_range(&(-5..5))?,
    ///     OverlapType::Disjoint);
    /// assert_eq!(range_obj.has_range(&(0..20))?,
    ///     OverlapType::Partial(10));
    /// assert_eq!(range_obj.has_range(&(-15..15))?,
    ///     OverlapType::Partial(10));
    /// # Ok::<(), RangeOperationError>(())
    /// ```
    ///
    /// # Errors
    ///
    /// Returns [`RangeOperationError`] if given range is invalid.
    pub fn has_range<U: RangeBounds<T>>(&self, range: &U)
            -> Result<OverlapType<T>,RangeOperationError> {
        let (input_start, input_end) = match get_normalized_range(range) {
            Ok((val_start,val_end)) => (val_start,val_end),
            Err(err) => return Err(err)
        };
        self.has_range_pair(&input_start, &input_end)
    }
    /// Functions like [`Self::has_range`] given input `start..=end`.
    pub fn has_range_pair(&self, start: &T, end: &T) -> Result<OverlapType<T>, RangeOperationError> {
        if start > end {
            return Err(RangeOperationError::IsDecreasingOrEmpty);
        }
        let vec_count = self.range_storage.len();
        let (range_start_enum, range_start_id) = self.has_element_enum(&start);
        let (range_end_enum, range_end_id) = self.has_element_enum(&end);
        assert!(range_end_id >= range_start_id);
        if range_start_id == range_end_id {
            // Single range, given endpoint<=a contained range endpoint
            if range_start_enum != ContainedType::Exterior {
                assert!(range_end_enum != ContainedType::Exterior);
                return Ok(OverlapType::Contained);
            } else {
                return match range_end_enum {
                    ContainedType::Exterior => Ok(OverlapType::Disjoint),
                    ContainedType::Start => {
                        let stored_range_start = self.range_storage[2*range_start_id];
                        assert!(*end == stored_range_start);
                        Ok(OverlapType::Partial(T::one()))
                    },
                    ContainedType::Interior => {
                        let stored_range_start = self.range_storage[2*range_start_id];
                        let overlap = *end-stored_range_start+T::one();
                        Ok(OverlapType::Partial(overlap))
                    }
                    ContainedType::End => {
                        let stored_range_start = self.range_storage[2*range_start_id];
                        let stored_range_end = self.range_storage[2*range_end_id+1];
                        let overlap = *end-stored_range_start+T::one();
                        assert!(*end == stored_range_end);
                        Ok(OverlapType::Partial(overlap))
                    }
                };
            }
        } else if range_end_id == range_start_id+1
                && range_end_enum == ContainedType::Exterior {
            // Single range, given endpoint>a contained range endpoint
            let contained_range_start = self.range_storage[2*range_start_id];
            let contained_range_end = self.range_storage[2*range_start_id+1];
            match range_start_enum {
                ContainedType::Exterior | ContainedType::Start => {
                    let size = contained_range_end-contained_range_start+T::one();
                    if range_start_enum == ContainedType::Start {
                        assert!(*start == contained_range_start);
                    }
                    return Ok(OverlapType::Partial(size));
                },
                ContainedType::Interior => {
                    let size = contained_range_end-*start+T::one();
                    return Ok(OverlapType::Partial(T::from(size).unwrap()));
                },
                ContainedType::End => {
                    assert!(*start == contained_range_end);
                    return Ok(OverlapType::Partial(T::one()));
                }
            }
        } else {
            // Multiple ranges
            // The answer must be partial, but we need to find the count
            assert!(
                !(range_end_enum==ContainedType::Exterior
                && range_end_id==0)
            );
            assert!(
                !(range_start_enum==ContainedType::Exterior
                && range_start_id==vec_count)
            );
            let mut partial_count: T = T::zero();
            // Count overlap for range_start_id range
            partial_count = partial_count + match range_start_enum {
                ContainedType::Exterior | ContainedType::Start => {
                    let contained_range_start = self.range_storage[2*range_start_id];
                    let contained_range_end = self.range_storage[2*range_start_id+1];
                    if range_start_enum == ContainedType::Start {
                        assert!(*start == contained_range_start);
                    }
                    contained_range_end-contained_range_start+T::one()
                },
                ContainedType::Interior => {
                    let contained_range_end = self.range_storage[2*range_start_id+1];
                    contained_range_end-*start+T::one()
                }
                ContainedType::End => {
                    let contained_range_end = self.range_storage[2*range_start_id+1];
                    assert!(*start == contained_range_end);
                    T::one()
                }
            };
            // Count overlap for range_end_id range
            if range_end_enum!=ContainedType::Exterior {
                let contained_range_begin = self.range_storage[2*range_end_id];
                let size = *end-contained_range_begin+T::one();
                // Asserts
                match range_end_enum {
                    ContainedType::Exterior => unreachable!(),
                    ContainedType::Start => assert!(size == T::one()),
                    ContainedType::Interior => (), // No assert needed
                    ContainedType::End => {
                        let contained_range_end = self.range_storage[2*range_end_id+1];
                        assert!(*end == contained_range_end);
                    }
                }
                partial_count = partial_count + size;
            }
            // Count overlap for intermediate ranges
            for selected_id in range_start_id+1..range_end_id {
                let selected_range_begin = self.range_storage[2*selected_id];
                let selected_range_end = self.range_storage[2*selected_id+1];
                let size = selected_range_end-selected_range_begin+T::one();
                partial_count = partial_count + size;
            }
            return Ok(OverlapType::Partial(partial_count));
        }
    }

    /// Inserts the range into the set of ranges.
    ///
    /// # Errors
    ///
    /// Returns [`RangeOperationError`] if the given range is invalid.
    pub fn insert_range<U: RangeBounds<T>>(&mut self, range: &U)
            -> Result<(), RangeOperationError> {
        let (input_start, input_end) = match get_normalized_range(range) {
            Ok((val_start,val_end)) => (val_start,val_end),
            Err(err) => return Err(err)
        };
        self.insert_range_pair(&input_start, &input_end)
    }
    /// Functions like [`Self::insert_range`] given input `start..=end`.
    pub fn insert_range_pair(&mut self, start: &T, end: &T)
            -> Result<(), RangeOperationError> {
        assert!(self.range_storage.len() % 2 == 0);
        if start > end {
            return Err(RangeOperationError::IsDecreasingOrEmpty);
        }
        match self.has_range_pair(&start, &end).unwrap() {
            OverlapType::Disjoint => {
                // Use match arms to catch potential overflows
                let prev_adj = match *start == T::min_value() {
                    true => Err(0), // start index, guaranteed not present
                    false => self.range_storage.binary_search(&(*start-T::one()))
                };
                let next_adj = match *end == T::max_value() {
                    true => Err(self.range_storage.len()), // end index, guaranteed not present
                    false => self.range_storage.binary_search(&(*end+T::one()))
                };
                if let (Ok(prev_val), Ok(next_val)) = (prev_adj, next_adj) {
                    // Element fills gap between ranges
                    assert_eq!(prev_val % 2, 1);
                    assert_eq!(next_val % 2, 0);
                    let index_remove = prev_val;
                    assert!(index_remove + 1 == next_val);
                    // Remove both endpoints
                    self.range_storage.drain(index_remove..=index_remove+1);
                } else if let Ok(prev_val) = prev_adj {
                    assert_eq!(prev_val % 2, 1);
                    // Extend start range by one, and insert other end
                    self.range_storage.remove_index(prev_val);
                    self.range_storage.insert(*end);
                } else if let Ok(next_val) = next_adj {
                    assert_eq!(next_val % 2, 0);
                    // Extend end range by one, and insert other end
                    self.range_storage.remove_index(next_val);
                    self.range_storage.insert(*start);
                } else {
                    assert_eq!(prev_adj.unwrap_err() % 2, 0);
                    assert_eq!(prev_adj.unwrap_err(), next_adj.unwrap_err());
                    // Insert entirely new range
                    self.range_storage.insert(*start);
                    self.range_storage.insert(*end);
                }
            }
            OverlapType::Partial(_) => {
                // Subsume all the intermediate ranges in the middle
                let del_index_start = {
                    let (_, start_range_id) = self.has_element_enum(&start);
                    2*start_range_id+1
                };
                let del_index_end = {
                    let (end_enum, end_range_id) = self.has_element_enum(&end);
                    match end_enum {
                        ContainedType::Exterior => {
                            // end_range_id==0 -> range isn't partial
                            debug_assert_ne!(end_range_id, 0);
                            2*(end_range_id-1)
                        },
                        _ => 2*end_range_id
                    }
                };
                assert!(del_index_start % 2 == 1);
                assert!(del_index_end % 2 == 0);
                if del_index_end > del_index_start {
                    // Guaranteed by asserts above
                    //assert!((del_index_end - del_index_start + 1) % 2 == 0);
                    self.range_storage.drain(del_index_start..=del_index_end);
                } else {
                    assert_eq!(del_index_start, del_index_end + 1);
                }

                // Adjust the start point
                let (start_enum, start_range_id) = self.has_element_enum(&start);
                if start_enum == ContainedType::Exterior {
                    let index_rm = 2*start_range_id;
                    if start_range_id > 0
                            && self.range_storage[index_rm-1] == *start-T::one() {
                        // End of prev range is adjacent to new one-merge ranges
                        // Removing gap is justified because overlap is partial
                        // start_range_id > 0 -> ranges do not involve 0
                        self.range_storage.drain(index_rm-1..=index_rm);
                    } else {
                        // Extend range with new starting position
                        let old_element = self.range_storage[index_rm];
                        let insert_pos = self.range_storage.insert(*start);
                        assert_eq!(insert_pos, index_rm);
                        let removed_element = self.range_storage.remove_index(index_rm+1);
                        assert!(old_element == removed_element);
                    }
                }
                // Adjust the end point
                let (end_enum, end_range_id) = self.has_element_enum(&end);
                if end_enum == ContainedType::Exterior {
                    // end_range_id==0 -> range isn't partial
                    debug_assert_ne!(end_range_id, 0);
                    let old_index_rm = 2*(end_range_id-1)+1;
                    if old_index_rm < (self.range_storage.len()-1)
                            && self.range_storage[old_index_rm+1] == *end+T::one() {
                        // Start of next range is adjacent to inserted range
                        self.range_storage.drain(old_index_rm..=old_index_rm+1);
                    } else {
                        // Extend range with new ending position
                        let old_element = self.range_storage[old_index_rm];
                        let insert_pos = self.range_storage.insert(*end);
                        assert_eq!(insert_pos, old_index_rm+1);
                        let removed_element = self.range_storage.remove_index(old_index_rm);
                        assert!(old_element == removed_element);
                    }
                }
            }
            OverlapType::Contained => {
                // Do nothing
            }
        }
        Ok(())
    }

    /// Removes the range from the set of ranges.
    ///
    /// # Errors
    ///
    /// Returns [`RangeOperationError`] if the given range is invalid.
    pub fn remove_range<U: RangeBounds<T>>(&mut self, range: &U)
            -> Result<(), RangeOperationError> {
        let (input_start, input_end) = match get_normalized_range(range) {
            Ok((val_start,val_end)) => (val_start,val_end),
            Err(err) => return Err(err)
        };
        self.remove_range_pair(&input_start, &input_end)
    }
    /// Functions like [`Self::remove_range`] given input `start..=end`.
    pub fn remove_range_pair(&mut self, start: &T, end: &T)
            -> Result<(), RangeOperationError> {
        assert!(self.range_storage.len() % 2 == 0);
        if start > end {
            return Err(RangeOperationError::IsDecreasingOrEmpty);
        }
        match self.has_range_pair(&start, &end).unwrap() {
            OverlapType::Disjoint => {
                // Do nothing
            }
            OverlapType::Partial(_) => {
                // Delete all the intermediate ranges in the middle
                let del_index_start = {
                    let (start_enum, start_range_id) = self.has_element_enum(&start);
                    match start_enum {
                        ContainedType::Exterior => 2*start_range_id,
                        _ => 2*(start_range_id+1)
                    }
                };
                let del_index_end_opt = {
                    let (_, end_range_id) = self.has_element_enum(&end);
                    // Exterior -> subtract to the range before
                    // else -> skip past the range the endpoint lies in
                    // Computation result is the same regardless
                    // Checked sub to catch 0 underflow
                    (2*end_range_id).checked_sub(1)
                };
                // These should be true, except for overflow prevention
                //assert!(del_index_start % 2 == 0);
                //assert!(del_index_end % 2 == 1);
                if let Some(del_index_end) = del_index_end_opt {
                    if del_index_end > del_index_start {
                        // Guaranteed by above asserts
                        //assert!((del_index_end - del_index_start + 1) % 2 == 0);
                        self.range_storage.drain(del_index_start..=del_index_end);
                    } else {
                        assert_eq!(del_index_start, del_index_end + 1);
                    }
                } else {
                    // "Correct" behavior: start=0 and end=-1
                    // This is also the only time this branch should ever be taken
                    assert_eq!(del_index_start, 0);
                }

                // Also do singleton checks as exact loc enum for singleton ranges is unspecified
                // Adjust the start point
                let (start_enum, start_range_id) = self.has_element_enum(&start);
                if start_enum == ContainedType::Start ||
                        (start_enum != ContainedType::Exterior && self.is_range_singleton(start_range_id).unwrap()) {
                    // Given start lines up with start of a range
                    // Was partial -> delete this entire range
                    self.range_storage.drain(
                        2*start_range_id..=2*start_range_id+1);
                } else if start_enum != ContainedType::Exterior {
                    // Move the endpoint to new location
                    self.range_storage.remove_index(2*start_range_id+1);
                    let insert_pos = self.range_storage.insert(*start-T::one());
                    assert_eq!(insert_pos, 2*start_range_id+1);
                }
                // Adjust the end point
                let (end_enum, end_range_id) = self.has_element_enum(&end);
                if end_enum == ContainedType::End ||
                        (end_enum != ContainedType::Exterior && self.is_range_singleton(end_range_id).unwrap()){
                    // Given end lines up with end of a range
                    // Was partial -> delete this entire range
                    self.range_storage.drain(
                        2*end_range_id..=2*end_range_id+1);
                } else if end_enum != ContainedType::Exterior {
                    // Move the startpoint to new location
                    self.range_storage.remove_index(2*end_range_id);
                    let insert_pos = self.range_storage.insert(*end+T::one());
                    assert_eq!(insert_pos, 2*end_range_id);
                }
            }
            OverlapType::Contained => {
                let prev_adj = self.range_storage.binary_search(start);
                let next_adj = self.range_storage.binary_search(end);
                if let (Ok(prev_val), Ok(next_val)) = (prev_adj, next_adj) {
                    if prev_val == next_val {
                        // Range has single element, equal to an endpoint
                        let old_endpoint = self.range_storage.remove_index(prev_val);
                        let replacement_endpoint = match prev_val % 2 {
                            0 => old_endpoint+T::one(), // Was beginning
                            1 => old_endpoint-T::one(), // Was end
                            _ => unreachable!()
                        };
                        self.range_storage.insert(replacement_endpoint);
                    } else {
                        assert_eq!(prev_val+1, next_val);
                        // Range exactly matches an existing range
                        // Remove both endpoints
                        self.range_storage.drain(prev_val..=prev_val+1);
                    }
                } else if let (Ok(prev_val), Err(next_val)) = (prev_adj, next_adj) {
                    assert_eq!(prev_val+1, next_val);
                    assert_eq!(prev_val % 2, 0);
                    // Shrink start range by replacing start point
                    self.range_storage.remove_index(prev_val);
                    self.range_storage.insert(*end+T::one());
                } else if let (Err(prev_val), Ok(next_val)) = (prev_adj, next_adj) {
                    assert_eq!(prev_val, next_val);
                    assert_eq!(prev_val % 2, 1);
                    // Extend end range by one, and insert other end
                    self.range_storage.remove_index(next_val);
                    self.range_storage.insert(*start-T::one());
                } else {
                    // Subtract entirely new range
                    self.range_storage.insert(*start-T::one());
                    self.range_storage.insert(*end+T::one());
                }
            }
        }
        Ok(())
    }

    /// Creates a collection of [`RangeInclusive`] with element type `T` from a [`IntRangeUnionFind`] object.
    pub fn into_collection<U>(self) -> U
    where
        U: FromIterator<RangeInclusive<T>>
    {
        assert!(self.range_storage.len() % 2 == 0);
        let size = self.range_storage.len() / 2;
        let mut self_iter = self.range_storage.into_vec().into_iter();
        let mut collect_vec = Vec::with_capacity(size);
        while let (Some(begin), Some(end)) = (self_iter.next(), self_iter.next()) {
            collect_vec.push(begin..=end);
        };
        collect_vec.into_iter().collect::<U>()
    }
    /// Converts a [`IntRangeUnionFind`] object into a collection of [`RangeInclusive`] with element type `T`.
    pub fn to_collection<U>(&self) -> U
    where
        U: FromIterator<RangeInclusive<T>>
    {
        self.clone().into_collection()
    }
}

impl<T: PrimInt> BitOr<&IntRangeUnionFind<T>> for &IntRangeUnionFind<T> {
    type Output = IntRangeUnionFind<T>;
    /// Computes the union of the two [`IntRangeUnionFind`] objects.
    fn bitor(self, rhs: &IntRangeUnionFind<T>) -> Self::Output {
        let mut dup_obj = self.clone();
        dup_obj.extend(rhs.to_collection::<Vec<RangeInclusive<T>>>());
        dup_obj
    }
}

impl<T: PrimInt> Sub<&IntRangeUnionFind<T>> for &IntRangeUnionFind<T> {
    type Output = IntRangeUnionFind<T>;
    /// Subtracts the rhs [`IntRangeUnionFind`] object from the lhs one.
    fn sub(self, rhs: &IntRangeUnionFind<T>) -> Self::Output {
        let mut dup_obj = self.clone();
        for range in rhs.to_collection::<Vec<RangeInclusive<T>>>() {
            dup_obj.remove_range(&range).unwrap();
        }
        dup_obj
    }
}

impl<T: PrimInt> Not for &IntRangeUnionFind<T> {
    type Output = IntRangeUnionFind<T>;
    fn not(self) -> Self::Output {
        let mut full_obj = IntRangeUnionFind::new();
        full_obj.insert_range(&(..)).unwrap();
        &full_obj - self
    }
}

impl<T: PrimInt> BitXor<&IntRangeUnionFind<T>> for &IntRangeUnionFind<T> {
    type Output = IntRangeUnionFind<T>;
    fn bitxor(self, rhs: &IntRangeUnionFind<T>) -> Self::Output {
        let first_diff_half = self - rhs;
        let second_diff_half = rhs - self;
        &first_diff_half | &second_diff_half
    }
}

impl<T: PrimInt> BitAnd<&IntRangeUnionFind<T>> for &IntRangeUnionFind<T> {
    type Output = IntRangeUnionFind<T>;
    /// Computes the union of the two [`IntRangeUnionFind`] objects.
    fn bitand(self, rhs: &IntRangeUnionFind<T>) -> Self::Output {
        let mut first_range_iter = self.to_collection::<Vec<_>>()
            .into_iter().peekable();
        let mut second_range_iter = rhs.to_collection::<Vec<_>>()
            .into_iter().peekable();
        // We rely on the iteration being in increasing order here
        let mut result_vec: Vec<RangeInclusive<T>> = Vec::new();
        loop {
            // One iter is out -> no more overlaps possible
            let first_range_option = first_range_iter.peek();
            if first_range_option.is_none() {
                break;
            }
            let second_range_option = second_range_iter.peek();
            if second_range_option.is_none() {
                break;
            }
            let first_range = get_normalized_range(first_range_option.unwrap()).unwrap();
            let second_range = get_normalized_range(second_range_option.unwrap()).unwrap();

            // Identify overlap and add overlap range to vec
            let start_overlap = max(first_range.0, second_range.0);
            let end_overlap = min(first_range.1, second_range.1);
            let overlap_range = start_overlap..=end_overlap;
            if get_normalized_range(&overlap_range).is_ok() {
                result_vec.push(overlap_range);
            }

            // Advance the correct iterator
            if first_range.1 <= second_range.1 {
                first_range_iter.next();
            } else {
                second_range_iter.next();
            }
        }
        IntRangeUnionFind::from_iter(result_vec.into_iter())
    }
}

impl<T> fmt::Debug for IntRangeUnionFind<T>
where
    T: PrimInt + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.range_storage.len() % 2 != 0 {
            let raw_vec_str = format!("{:?}", self.range_storage.to_vec());
            panic!("Invalid internal storage {}", raw_vec_str);
        }
        write!(f, "[")?;
        let mut pairs: Vec<String> = Vec::with_capacity(
            self.range_storage.len()/2);
        let mut range_pairs = self.range_storage.chunks_exact(2);
        loop {
            let range = match range_pairs.next() {
                None => {
                    debug_assert!(range_pairs.remainder().is_empty());
                    break;
                },
                Some(val) => val
            };
            pairs.push(format!("{:?}..={:?}", range[0], range[1]));
        }
        write!(f, "{}", pairs.join(", "))?;
        return write!(f, "]");
    }
}

impl<T, U> Extend<U> for IntRangeUnionFind<T>
where
    T: PrimInt,
    U: RangeBounds<T>
{
    /// Calls [`Self::insert_range`] for each range in the iterator.
    ///
    /// # Panics
    ///
    /// Panics if any of the range insertions return an `Err`.
    fn extend<I: IntoIterator<Item=U>>(&mut self, iter: I) {
        for range in iter {
            self.insert_range(&range).unwrap()
        }
    }
}

impl<T, U> FromIterator<U> for IntRangeUnionFind<T>
where
    T: PrimInt,
    U: RangeBounds<T>
{
    /// Calls [`Self::insert_range`] for each range in the iterator.
    ///
    /// # Panics
    ///
    /// Panics if any of the range insertions return an `Err`.
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = U>
    {
        let mut new_range_obj = IntRangeUnionFind::new();
        new_range_obj.extend(iter);
        new_range_obj
    }
}

// TODO: other Vec types?
impl<T: PrimInt> From<IntRangeUnionFind<T>> for Vec<RangeInclusive<T>> {
    fn from(union_obj: IntRangeUnionFind<T>) -> Vec<RangeInclusive<T>> {
        union_obj.into_collection()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn insert_max_size_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(0..=0xff)).unwrap();
        for i in 0..=0xff {
            assert!(range_obj.has_element(&i));
        }
        assert_eq!(range_obj.has_range(&(0..=0xff)).unwrap(),
            OverlapType::Contained);

        let mut unbounded_range_obj = IntRangeUnionFind::<u8>::new();
        unbounded_range_obj.insert_range(&(..)).unwrap();
        assert_eq!(range_obj, unbounded_range_obj);
    }
    #[test]
    fn reject_bad_ranges() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(5..=2)).unwrap_err();
        range_obj.insert_range_pair(&5, &2).unwrap_err();

        range_obj.has_range(&(5..=2)).unwrap_err();
        range_obj.has_range_pair(&5, &2).unwrap_err();

        range_obj.remove_range(&(5..=2)).unwrap_err();
        range_obj.remove_range_pair(&5, &2).unwrap_err();
    }
    #[test]
    fn make_from_iter() {
        let range_vec = vec![1..3, 5..7];
        let range_obj = IntRangeUnionFind::<u8>::from_iter(range_vec);

        let mut range_obj_ref = IntRangeUnionFind::<u8>::new();
        range_obj_ref.insert_range(&(1..3)).unwrap();
        range_obj_ref.insert_range(&(5..7)).unwrap();
        assert_eq!(range_obj, range_obj_ref);
    }
    #[test]
    fn turn_into_iter() {
        let range_vec = vec![1..=3, 5..=7, 10..=16];
        let range_obj = IntRangeUnionFind::<u8>::from_iter(range_vec.clone());
        let extract_vec: Vec<RangeInclusive<u8>> = range_obj.into_collection();
        assert_eq!(range_vec, extract_vec);
    }
    #[test]
    fn extend_bitor_equivalence() {
        let range_vec_full = vec![1..=3, 5..=7, 10..=16];
        let range_obj_full = IntRangeUnionFind::<u8>::from_iter(range_vec_full);

        let range_vec_second = vec![5..=7, 10..=16];
        let range_obj_second = IntRangeUnionFind::<u8>::from_iter(range_vec_second);

        let mut range_obj_first = IntRangeUnionFind::<u8>::default();
        range_obj_first.insert_range(&(1..=3)).unwrap();
        let mut range_obj_build = range_obj_first.clone();

        let range_obj_final = &range_obj_first | &range_obj_second;
        assert_eq!(range_obj_full, range_obj_final);

        range_obj_build = &range_obj_build | &range_obj_second;
        assert_eq!(range_obj_full, range_obj_build);
    }

    #[test]
    fn print_dual_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(0..=4)).unwrap();
        range_obj.insert_range(&(8..=16)).unwrap();
        let formatted = format!("{:?}",range_obj);
        assert_eq!(formatted, "[0..=4, 8..=16]");
    }

    #[test]
    fn single_range_has_element() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        for i in 0..=7 {
            assert!(!range_obj.has_element(&i));
        }
        for i in 8..=16 {
            assert!(range_obj.has_element(&i));
        }
        for i in 17..=20 {
            assert!(!range_obj.has_element(&i));
        }
    }
    #[test]
    fn dual_range_singleton_has_element() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        range_obj.insert_range(&(4..=4)).unwrap();
        for i in 0..=3 {
            assert!(!range_obj.has_element(&i));
        }
        assert!(range_obj.has_element(&4));
        for i in 5..=7 {
            assert!(!range_obj.has_element(&i));
        }
        for i in 8..=16 {
            assert!(range_obj.has_element(&i));
        }
        for i in 17..=20 {
            assert!(!range_obj.has_element(&i));
        }
    }
    #[test]
    fn dual_range_has_element() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        range_obj.insert_range(&(20..=40)).unwrap();
        for i in 0..=7 {
            assert!(!range_obj.has_element(&i));
        }
        for i in 8..=16 {
            assert!(range_obj.has_element(&i));
        }
        for i in 17..=19 {
            assert!(!range_obj.has_element(&i));
        }
        for i in 20..=40 {
            assert!(range_obj.has_element(&i));
        }
        for i in 41..=50 {
            assert!(!range_obj.has_element(&i));
        }
    }

    #[test]
    fn single_range_range_disjoint() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();

        assert_eq!(range_obj.has_range(&(0..=7)).unwrap(),OverlapType::Disjoint);
        assert_eq!(range_obj.has_range(&(17..=25)).unwrap(),OverlapType::Disjoint);
    }
    #[test]
    fn single_range_has_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();

        assert_eq!(range_obj.has_range(&(8..=16)).unwrap(),OverlapType::Contained);
        assert_eq!(range_obj.has_range(&(8..=11)).unwrap(),OverlapType::Contained);
        assert_eq!(range_obj.has_range(&(12..=14)).unwrap(),OverlapType::Contained);
        assert_eq!(range_obj.has_range(&(15..=16)).unwrap(),OverlapType::Contained);
    }
    #[test]
    fn single_range_range_partial() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();

        assert_eq!(range_obj.has_range(&(0..=8)).unwrap(),OverlapType::Partial(1));
        assert_eq!(range_obj.has_range(&(0..=9)).unwrap(),OverlapType::Partial(2));
        assert_eq!(range_obj.has_range(&(16..=20)).unwrap(),OverlapType::Partial(1));
        assert_eq!(range_obj.has_range(&(15..=20)).unwrap(),OverlapType::Partial(2));
        assert_eq!(range_obj.has_range(&(0..=24)).unwrap(),OverlapType::Partial(9));
        assert_eq!(range_obj.has_range(&(0..=16)).unwrap(),OverlapType::Partial(9));
        assert_eq!(range_obj.has_range(&(8..=24)).unwrap(),OverlapType::Partial(9));
    }
    #[test]
    fn multi_range_range_partial() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(4..=7)).unwrap();
        range_obj.insert_range(&(12..=15)).unwrap();
        range_obj.insert_range(&(20..=23)).unwrap();

        assert_eq!(range_obj.has_range(&(2..=10)).unwrap(),OverlapType::Partial(4));
        assert_eq!(range_obj.has_range(&(4..=10)).unwrap(),OverlapType::Partial(4));
        assert_eq!(range_obj.has_range(&(4..=12)).unwrap(),OverlapType::Partial(5));
        assert_eq!(range_obj.has_range(&(4..=14)).unwrap(),OverlapType::Partial(7));
        assert_eq!(range_obj.has_range(&(4..=15)).unwrap(),OverlapType::Partial(8));
        assert_eq!(range_obj.has_range(&(4..=20)).unwrap(),OverlapType::Partial(9));
        assert_eq!(range_obj.has_range(&(4..=22)).unwrap(),OverlapType::Partial(11));
        assert_eq!(range_obj.has_range(&(4..=23)).unwrap(),OverlapType::Partial(12));

        assert_eq!(range_obj.has_range(&(5..=23)).unwrap(),OverlapType::Partial(11));
        assert_eq!(range_obj.has_range(&(7..=23)).unwrap(),OverlapType::Partial(9));
    }
    #[test]
    fn dual_range_singleton_has_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        range_obj.insert_range(&(4..=4)).unwrap();
        assert!(range_obj.has_range(&(0..=3)).unwrap()==OverlapType::Disjoint);
        assert!(range_obj.has_range(&(4..=4)).unwrap()==OverlapType::Contained);
        assert!(range_obj.has_range(&(5..=7)).unwrap()==OverlapType::Disjoint);
        assert!(range_obj.has_range(&(8..=16)).unwrap()==OverlapType::Contained);
        assert!(range_obj.has_range(&(17..=20)).unwrap()==OverlapType::Disjoint);

        assert!(range_obj.has_range(&(0..8)).unwrap()==OverlapType::Partial(1));
    }

    #[test]
    fn insert_contained_range_over_single_range() {
        let mut range_obj_old = IntRangeUnionFind::<u32>::new();
        range_obj_old.insert_range(&(8..=16)).unwrap();

        let mut range_obj_new = range_obj_old.clone();
        range_obj_new.insert_range(&(12..=14)).unwrap();
        assert_eq!(range_obj_old, range_obj_new);

        let mut range_obj_new = range_obj_old.clone();
        range_obj_new.insert_range(&(8..=14)).unwrap();
        assert_eq!(range_obj_old, range_obj_new);

        let mut range_obj_new = range_obj_old.clone();
        range_obj_new.insert_range(&(12..=16)).unwrap();
        assert_eq!(range_obj_old, range_obj_new);
    }
    #[test]
    fn insert_partial_range_over_single_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        range_obj.insert_range(&(0..=12)).unwrap();

        let mut range_obj_single = IntRangeUnionFind::<u32>::new();
        range_obj_single.insert_range(&(0..=16)).unwrap();
        assert_eq!(range_obj, range_obj_single);

        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        range_obj.insert_range(&(8..=24)).unwrap();

        let mut range_obj_single = IntRangeUnionFind::<u32>::new();
        range_obj_single.insert_range(&(8..=24)).unwrap();
        assert_eq!(range_obj, range_obj_single);

        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(8..=16)).unwrap();
        range_obj.insert_range(&(0..=24)).unwrap();

        let mut range_obj_single = IntRangeUnionFind::<u32>::new();
        range_obj_single.insert_range(&(0..=24)).unwrap();
        assert_eq!(range_obj, range_obj_single);
    }
    #[test]
    fn insert_partial_overarch_adj_range_over_single_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(12..=16)).unwrap();
        range_obj.insert_range(&(11..=15)).unwrap();

        let mut range_obj_final = IntRangeUnionFind::<u32>::new();
        range_obj_final.insert_range(&(11..=16)).unwrap();
        assert_eq!(range_obj, range_obj_final);
    }
    #[test]
    fn insert_partial_overarch_full_valuespan() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(0..=0)).unwrap();
        range_obj.insert_range(&(0xff..=0xff)).unwrap();

        range_obj.insert_range(&(0..=0xff)).unwrap();

        let mut range_obj_final = IntRangeUnionFind::<u8>::new();
        range_obj_final.insert_range(&(0..=0xff)).unwrap();
        assert_eq!(range_obj, range_obj_final);
    }
    #[test]
    fn insert_partial_overarch_adj_range_over_dual_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(12..=16)).unwrap();
        range_obj.insert_range(&(4..=8)).unwrap();
        let mut range_obj_2 = range_obj.clone();
        let mut range_obj_3 = range_obj.clone();

        range_obj.insert_range(&(0..=11)).unwrap();

        let mut range_obj_final = IntRangeUnionFind::<u32>::new();
        range_obj_final.insert_range(&(0..=16)).unwrap();
        assert_eq!(range_obj, range_obj_final);

        range_obj_2.insert_range(&(9..=20)).unwrap();
        let mut range_obj_final = IntRangeUnionFind::<u32>::new();
        range_obj_final.insert_range(&(4..=20)).unwrap();
        assert_eq!(range_obj_2, range_obj_final);

        range_obj_3.insert_range(&(4..=16)).unwrap();
        let mut range_obj_final = IntRangeUnionFind::<u32>::new();
        range_obj_final.insert_range(&(4..=16)).unwrap();
        assert_eq!(range_obj_3, range_obj_final);
    }
    #[test]
    fn insert_partial_overarch_all_range_over_multi_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(12..=16)).unwrap();
        range_obj.insert_range(&(4..=8)).unwrap();
        let mut range_obj_3 = range_obj.clone();

        range_obj.insert_range(&(0..=20)).unwrap();

        let mut range_obj_single = IntRangeUnionFind::<u32>::new();
        range_obj_single.insert_range(&(0..=20)).unwrap();
        assert_eq!(range_obj, range_obj_single);

        range_obj_3.insert_range(&(6..=14)).unwrap();
        let mut range_obj_single_3 = IntRangeUnionFind::<u32>::new();
        range_obj_single_3.insert_range(&(4..=16)).unwrap();
        assert_eq!(range_obj_3, range_obj_single_3);

        let mut range_obj_2 = IntRangeUnionFind::<u32>::new();
        range_obj_2.insert_range(&(0..=3)).unwrap();
        range_obj_2.insert_range(&(5..=7)).unwrap();
        range_obj_2.insert_range(&(9..=11)).unwrap();
        range_obj_2.insert_range(&(13..=15)).unwrap();
        range_obj_2.insert_range(&(17..=20)).unwrap();

        range_obj_2.insert_range(&(0..=20)).unwrap();
        assert_eq!(range_obj_2, range_obj_single);
    }
    #[test]
    fn insert_partial_gapfill_range_over_dual_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(12..=16)).unwrap();
        range_obj.insert_range(&(4..=8)).unwrap();

        range_obj.insert_range(&(0..=3)).unwrap();

        let mut range_obj_combined = IntRangeUnionFind::<u32>::new();
        range_obj_combined.insert_range(&(0..=8)).unwrap();
        range_obj_combined.insert_range(&(12..=16)).unwrap();
        assert_eq!(range_obj, range_obj_combined);

        range_obj.insert_range(&(17..=20)).unwrap();

        let mut range_obj_combined = IntRangeUnionFind::<u32>::new();
        range_obj_combined.insert_range(&(0..=8)).unwrap();
        range_obj_combined.insert_range(&(12..=20)).unwrap();
        assert_eq!(range_obj, range_obj_combined);

        range_obj.insert_range(&(9..=11)).unwrap();

        let mut range_obj_combined = IntRangeUnionFind::<u32>::new();
        range_obj_combined.insert_range(&(0..=20)).unwrap();
        assert_eq!(range_obj, range_obj_combined);
    }
    #[test]
    fn insert_single_element_adj_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(11..20)).unwrap();
        range_obj.insert_range(&(10..=10)).unwrap();
        range_obj.insert_range(&(20..=20)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u32>::new();
        expected_obj.insert_range(&(10..=20)).unwrap();

        assert_eq!(expected_obj, range_obj);
    }
    #[test]
    fn insert_range_over_endpoint_singletons() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(10..=10)).unwrap();
        range_obj.insert_range(&(20..=20)).unwrap();
        let mut range_obj_2 = range_obj.clone();
        range_obj.insert_range(&(11..=19)).unwrap();
        range_obj_2.insert_range(&(10..=20)).unwrap();
        assert_eq!(range_obj, range_obj_2);

        let mut expected_obj = IntRangeUnionFind::<u32>::new();
        expected_obj.insert_range(&(10..=20)).unwrap();

        assert_eq!(expected_obj, range_obj);
    }
    #[test]
    fn insert_gapfill_element_over_dual_range() {
        let mut range_obj = IntRangeUnionFind::<u32>::new();
        range_obj.insert_range(&(10..=16)).unwrap();
        range_obj.insert_range(&(0..=8)).unwrap();

        range_obj.insert_range(&(9..=9)).unwrap();

        let mut range_obj_combined = IntRangeUnionFind::<u32>::new();
        range_obj_combined.insert_range(&(0..=16)).unwrap();
        assert_eq!(range_obj, range_obj_combined);
    }

    #[test]
    fn remove_disjoint_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..20)).unwrap();
        let expected_obj = range_obj.clone();
        range_obj.remove_range(&(0..10)).unwrap();
        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_entire_single_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..=12)).unwrap();
        range_obj.remove_range(&(4..=12)).unwrap();

        let expected_obj = IntRangeUnionFind::<u8>::new();
        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_partial_single_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..=12)).unwrap();
        range_obj.remove_range(&(4..=7)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(8..=12)).unwrap();
        assert_eq!(range_obj, expected_obj);

        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..=12)).unwrap();
        range_obj.remove_range(&(10..=12)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(4..=9)).unwrap();
        assert_eq!(range_obj, expected_obj);

        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..=12)).unwrap();
        range_obj.remove_range(&(5..=11)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(4..=4)).unwrap();
        expected_obj.insert_range(&(12..=12)).unwrap();
        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_endpoint_overlap_single_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..=12)).unwrap();
        range_obj.remove_range(&(4..=4)).unwrap();
        range_obj.remove_range(&(12..=12)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(5..=11)).unwrap();
        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_overlap_single_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..=12)).unwrap();
        let mut range_obj_2 = range_obj.clone();
        range_obj.remove_range(&(0..=8)).unwrap();
        range_obj_2.remove_range(&(10..=15)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(9..=12)).unwrap();
        assert_eq!(range_obj, expected_obj);

        let mut expected_obj_2 = IntRangeUnionFind::<u8>::new();
        expected_obj_2.insert_range(&(4..=9)).unwrap();
        assert_eq!(range_obj_2, expected_obj_2);
    }
    #[test]
    fn remove_overarch_partial_match() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(4..8)).unwrap();
        range_obj.remove_range(&(0..10)).unwrap();

        let expected_obj = IntRangeUnionFind::<u8>::new();
        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_partial_multiple_ranges() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();
        range_obj.insert_range(&(30..=40)).unwrap();
        range_obj.insert_range(&(50..=60)).unwrap();
        range_obj.remove_range(&(15..=55)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(10..=14)).unwrap();
        expected_obj.insert_range(&(56..=60)).unwrap();

        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_partial_multiple_ranges_rangeswallow() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();
        range_obj.insert_range(&(30..=40)).unwrap();
        range_obj.insert_range(&(50..=60)).unwrap();
        range_obj.insert_range(&(70..=80)).unwrap();

        range_obj.remove_range(&(30..=60)).unwrap();

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(10..=20)).unwrap();
        expected_obj.insert_range(&(70..=80)).unwrap();

        assert_eq!(range_obj, expected_obj);
    }
    #[test]
    fn remove_sub_equivalence() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();
        range_obj.insert_range(&(30..=40)).unwrap();
        range_obj.insert_range(&(50..=60)).unwrap();
        range_obj.insert_range(&(70..=80)).unwrap();

        let full_obj = range_obj.clone();
        range_obj.remove_range(&(30..=60)).unwrap();
        range_obj.remove_range(&(11..16)).unwrap();

        let mut range_rhs = IntRangeUnionFind::<u8>::new();
        range_rhs.insert_range(&(30..=60)).unwrap();
        range_rhs.insert_range(&(11..16)).unwrap();

        let sub_obj = &full_obj - &range_rhs;
        assert_eq!(range_obj, sub_obj);
    }
    #[test]
    fn remove_over_valuespan_singletons() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(2..=0xfd)).unwrap();
        range_obj.insert_range(&(0..=0)).unwrap();
        range_obj.insert_range(&(0xff..=0xff)).unwrap();

        let mut range_obj_rm_upper = range_obj.clone();
        let mut range_obj_rm_lower = range_obj.clone();

        let mut lower_half_obj = IntRangeUnionFind::<u8>::new();
        lower_half_obj.insert_range(&(2..=0x7f)).unwrap();
        lower_half_obj.insert_range(&(0..=0)).unwrap();
        range_obj_rm_upper.remove_range(&(0x80..=0xff)).unwrap();
        assert_eq!(lower_half_obj, range_obj_rm_upper);

        let mut upper_half_obj = IntRangeUnionFind::<u8>::new();
        upper_half_obj.insert_range(&(0x80..=0xfd)).unwrap();
        upper_half_obj.insert_range(&(0xff..=0xff)).unwrap();
        range_obj_rm_lower.remove_range(&(0..0x80)).unwrap();
        assert_eq!(upper_half_obj, range_obj_rm_lower);
    }

    #[test]
    fn bitand_same_obj() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();
        range_obj.insert_range(&(30..=40)).unwrap();

        let anded_obj = &range_obj & &range_obj;
        assert_eq!(range_obj, anded_obj);
    }
    #[test]
    fn bitand_when_contained() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=50)).unwrap();

        let mut rhs_obj = IntRangeUnionFind::<u8>::new();
        rhs_obj.insert_range(&(20..=30)).unwrap();

        let anded_obj_1 = &range_obj & &rhs_obj;
        let anded_obj_2 = &rhs_obj & &range_obj;
        assert_eq!(anded_obj_1, anded_obj_2);

        assert_eq!(anded_obj_1, rhs_obj);
    }
    #[test]
    fn bitand_when_disjoint() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=15)).unwrap();

        let mut rhs_obj = IntRangeUnionFind::<u8>::new();
        rhs_obj.insert_range(&(20..=30)).unwrap();

        let anded_obj_1 = &range_obj & &rhs_obj;
        let anded_obj_2 = &rhs_obj & &range_obj;
        assert_eq!(anded_obj_1, anded_obj_2);

        let expected_obj = IntRangeUnionFind::<u8>::new();
        assert_eq!(anded_obj_1, expected_obj);
    }
    #[test]
    fn bitand_overarch_subselect() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();
        range_obj.insert_range(&(30..=40)).unwrap();
        range_obj.insert_range(&(50..=60)).unwrap();
        range_obj.insert_range(&(70..=80)).unwrap();

        let mut rhs_obj = IntRangeUnionFind::<u8>::new();
        rhs_obj.insert_range(&(0..35)).unwrap();

        let anded_obj_1 = &range_obj & &rhs_obj;
        let anded_obj_2 = &rhs_obj & &range_obj;
        assert_eq!(anded_obj_1, anded_obj_2);

        let mut expected_obj = IntRangeUnionFind::<u8>::new();
        expected_obj.insert_range(&(10..=20)).unwrap();
        expected_obj.insert_range(&(30..=34)).unwrap();
        assert_eq!(anded_obj_1, expected_obj);
    }

    #[test]
    fn inverse_range() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();

        let mut expected_inverted_range = IntRangeUnionFind::<u8>::new();
        expected_inverted_range.insert_range(&(..=9)).unwrap();
        expected_inverted_range.insert_range(&(21..)).unwrap();

        assert_eq!(!&range_obj, expected_inverted_range);
    }

    #[test]
    fn xor_partial() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();

        let mut rhs_obj = IntRangeUnionFind::<u8>::new();
        rhs_obj.insert_range(&(15..=25)).unwrap();

        assert_eq!(&range_obj ^ &rhs_obj, &rhs_obj ^ &range_obj);

        let mut expected_xor_obj = IntRangeUnionFind::<u8>::new();
        expected_xor_obj.insert_range(&(10..=14)).unwrap();
        expected_xor_obj.insert_range(&(21..=25)).unwrap();

        assert_eq!(&range_obj ^ &rhs_obj, expected_xor_obj);
    }

    #[test]
    fn range_set_boolean_ops_demorgan() {
        let mut range_obj = IntRangeUnionFind::<u8>::new();
        range_obj.insert_range(&(10..=20)).unwrap();
        range_obj.insert_range(&(30..=40)).unwrap();
        range_obj.insert_range(&(50..=60)).unwrap();
        range_obj.insert_range(&(70..=80)).unwrap();

        let mut range_obj_2 = IntRangeUnionFind::<u8>::new();
        range_obj_2.insert_range(&(30..=60)).unwrap();
        range_obj_2.insert_range(&(11..16)).unwrap();

        let range_obj_or_given = &range_obj | &range_obj_2;
        let range_obj_and_given = &range_obj & &range_obj_2;
        let range_obj_xor_given = &range_obj ^ &range_obj_2;

        assert_eq!(range_obj_xor_given, &range_obj_or_given - &range_obj_and_given);

        let range_obj_or_then_not = !&range_obj_or_given;
        let range_obj_and_then_not = !&range_obj_and_given;

        let range_obj_not_then_or = &!&range_obj | &!&range_obj_2;
        let range_obj_not_then_and = &!&range_obj & &!&range_obj_2;

        assert_eq!(range_obj_not_then_and, range_obj_or_then_not);
        assert_eq!(range_obj_not_then_or, range_obj_and_then_not);
    }
}