1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#![forbid(unsafe_code, missing_docs)]
#![cfg_attr(test, deny(warnings))]
#![doc(test(attr(deny(warnings))))]
//! # Continuously read and write to memory using random offsets and lengths
//! [RandomAccessMemory] is a complete implementation of [random-access-storage](https://docs.rs/random-access-storage)
//! for in-memory storage.
//!
//! See also [random-access-disk](https://docs.rs/random-access-disk) for on-disk storage
//! that can be swapped with this.
//!
//! ## Examples
//!
//! Reading, writing, deleting and truncating:
//!
//! ```
//! # async_std::task::block_on(async {
//! use random_access_storage::RandomAccess;
//! use random_access_memory::RandomAccessMemory;
//!
//! let mut storage = RandomAccessMemory::default();
//! storage.write(0, b"hello").await.unwrap();
//! storage.write(5, b" world").await.unwrap();
//! assert_eq!(storage.read(0, 11).await.unwrap(), b"hello world");
//! assert_eq!(storage.len().await.unwrap(), 11);
//! storage.del(5, 2).await.unwrap();
//! assert_eq!(storage.read(5, 2).await.unwrap(), [0, 0]);
//! assert_eq!(storage.len().await.unwrap(), 11);
//! storage.truncate(2).await.unwrap();
//! assert_eq!(storage.len().await.unwrap(), 2);
//! storage.truncate(5).await.unwrap();
//! assert_eq!(storage.len().await.unwrap(), 5);
//! assert_eq!(storage.read(0, 5).await.unwrap(), [b'h', b'e', 0, 0, 0]);
//! # })
//! ```
//!
//! In order to get benefits from the swappable interface, you will
//! in most cases want to use generic functions for storage manipulation:
//!
//! ```
//! # async_std::task::block_on(async {
//! use random_access_storage::RandomAccess;
//! use random_access_memory::RandomAccessMemory;
//! use std::fmt::Debug;
//!
//! let mut storage = RandomAccessMemory::default();
//! write_hello_world(&mut storage).await;
//! assert_eq!(read_hello_world(&mut storage).await, b"hello world");
//!
//! /// Write with swappable storage
//! async fn write_hello_world<T>(storage: &mut T)
//! where T: RandomAccess + Debug + Send,
//! {
//!   storage.write(0, b"hello").await.unwrap();
//!   storage.write(5, b" world").await.unwrap();
//! }
//!
//! /// Read with swappable storage
//! async fn read_hello_world<T>(storage: &mut T) -> Vec<u8>
//! where T: RandomAccess + Debug + Send,
//! {
//!   storage.read(0, 11).await.unwrap()
//! }
//! # })
//! ```

pub use intmap::IntMap;

use random_access_storage::{RandomAccess, RandomAccessError};
use std::cmp;

/// In-memory storage for random access
#[derive(Debug)]
pub struct RandomAccessMemory {
  /// Length of each buffer
  page_size: usize,

  /// Allocated memory
  buffers: IntMap<Vec<u8>>,

  /// Total length of the data
  length: u64,
}

impl Default for RandomAccessMemory {
  /// Create a new instance with a 1mb page size.
  fn default() -> Self {
    RandomAccessMemory::new(1024 * 1024)
  }
}

#[allow(clippy::needless_range_loop)]
impl RandomAccessMemory {
  /// Create a new instance with `page_size` in bytes.
  pub fn new(page_size: usize) -> Self {
    RandomAccessMemory::with_buffers(page_size, IntMap::new())
  }

  /// Create a new instance with `page_size` in bytes, but pass the initial buffers to the constructor.
  pub fn with_buffers(page_size: usize, buffers: IntMap<Vec<u8>>) -> Self {
    RandomAccessMemory {
      page_size,
      buffers,
      length: 0,
    }
  }

  /// Returns the page number and index within that page for a given offset.
  /// If `exclusive_end` is true, when hitting the exact border of two pages
  /// gives the previous page and page size as index.
  fn page_num_and_index(
    &self,
    offset: u64,
    exclusive_end: bool,
  ) -> (usize, usize) {
    let page_num = (offset / (self.page_size as u64)) as usize;
    let page_index = (offset % (self.page_size as u64)) as usize;
    if page_index == 0 && exclusive_end {
      (if page_num > 0 { page_num - 1 } else { 0 }, self.page_size)
    } else {
      (page_num, page_index)
    }
  }

  /// Zero given range
  fn zero(&mut self, offset: u64, length: u64) {
    let (first_page_num, first_page_start) =
      self.page_num_and_index(offset, false);
    let (last_page_num, last_page_end) =
      self.page_num_and_index(offset + length, true);

    // Check if we need to zero bytes in the first page
    if first_page_start > 0
      || (first_page_num == last_page_num && last_page_end > 0)
    {
      if let Some(page) = self.buffers.get_mut(first_page_num as u64) {
        // Need to zero part of the first page
        let begin_page_end = first_page_start
          + cmp::min(length as usize, self.page_size - first_page_start);
        for index in first_page_start..begin_page_end {
          page[index] = 0;
        }
      }
    }

    // Delete intermediate pages
    if last_page_num > first_page_num + 1
      || (first_page_start == 0 && last_page_num == first_page_num + 1)
    {
      let first_page_to_drop = if first_page_start == 0 {
        first_page_num
      } else {
        first_page_num + 1
      };

      for index in first_page_to_drop..last_page_num {
        self.buffers.remove(index as u64);
      }
    }

    // Finally zero the last page
    if last_page_num > first_page_num && last_page_end > 0 {
      if let Some(page) = self.buffers.get_mut(last_page_num as u64) {
        // Need to zero part of the final page
        for index in 0..last_page_end {
          page[index] = 0;
        }
      }
    }
  }
}

#[async_trait::async_trait]
impl RandomAccess for RandomAccessMemory {
  async fn write(
    &mut self,
    offset: u64,
    data: &[u8],
  ) -> Result<(), RandomAccessError> {
    let new_len = offset + data.len() as u64;
    if new_len > self.length {
      self.length = new_len;
    }

    let mut page_num = (offset / self.page_size as u64) as usize;
    let mut page_cursor =
      (offset - (page_num * self.page_size) as u64) as usize;
    let mut data_cursor = 0;

    // Iterate over data, write to buffers. Subslice if the data is bigger than
    // what we can write in a single go.
    while data_cursor < data.len() {
      let data_bound = data.len() - data_cursor;
      let upper_bound = cmp::min(self.page_size, page_cursor + data_bound);
      let range = page_cursor..upper_bound;
      let range_len = (page_cursor..upper_bound).len();

      // Allocate buffer if needed. Either append a new buffer to the end, or
      // set a buffer in the center.
      if self.buffers.get(page_num as u64).is_none() {
        let buf = vec![0; self.page_size];
        self.buffers.insert(page_num as u64, buf);
      }

      // Copy data from the vec slice.
      // TODO: use a batch operation such as `.copy_from_slice()` so it can be
      // optimized.
      let buffer = &mut self.buffers.get_mut(page_num as u64).unwrap();
      for (index, buf_index) in range.enumerate() {
        buffer[buf_index] = data[data_cursor + index];
      }

      page_num += 1;
      page_cursor = 0;
      data_cursor += range_len;
    }

    Ok(())
  }

  async fn sync_all(&mut self) -> Result<(), RandomAccessError> {
    Ok(())
  }

  async fn read(
    &mut self,
    offset: u64,
    length: u64,
  ) -> Result<Vec<u8>, RandomAccessError> {
    if (offset + length) > self.length {
      return Err(RandomAccessError::OutOfBounds {
        offset,
        end: Some(offset + length),
        length: self.length,
      });
    };

    let mut page_num = (offset / self.page_size as u64) as usize;
    let mut page_cursor =
      (offset - (page_num * self.page_size) as u64) as usize;

    let mut res_buf = vec![0; length as usize];
    let mut res_cursor = 0; // Keep track we read the right amount of bytes.
    let res_capacity = length;

    while res_cursor < res_capacity {
      let res_bound = res_capacity - res_cursor;
      let page_bound = self.page_size - page_cursor;
      let relative_bound = cmp::min(res_bound, page_bound as u64);
      let upper_bound = page_cursor + relative_bound as usize;
      let range = page_cursor..upper_bound;

      // Fill until either we're done reading the page, or we're done
      // filling the buffer. Whichever arrives sooner.
      match self.buffers.get(page_num as u64) {
        Some(buf) => {
          for (index, buf_index) in range.enumerate() {
            res_buf[res_cursor as usize + index] = buf[buf_index];
          }
        }
        None => {
          for (index, _) in range.enumerate() {
            res_buf[res_cursor as usize + index] = 0;
          }
        }
      }

      res_cursor += relative_bound;
      page_num += 1;
      page_cursor = 0;
    }

    Ok(res_buf)
  }

  async fn del(
    &mut self,
    offset: u64,
    length: u64,
  ) -> Result<(), RandomAccessError> {
    if offset > self.length {
      return Err(RandomAccessError::OutOfBounds {
        offset,
        end: None,
        length: self.length,
      });
    };

    if length == 0 {
      // No-op
      return Ok(());
    }

    // Delete is truncate if up to the current length or more is deleted
    if offset + length >= self.length {
      return self.truncate(offset).await;
    }

    // Deleting means zeroing
    self.zero(offset, length);
    Ok(())
  }

  #[allow(clippy::comparison_chain)]
  async fn truncate(&mut self, length: u64) -> Result<(), RandomAccessError> {
    let (current_last_page_num, _) = self.page_num_and_index(self.length, true);

    if self.length < length {
      let truncate_page_num = (length / self.page_size as u64) as usize;
      // Remove all of the pages between the old length and this newer
      // length that might have been left behind.
      for index in current_last_page_num + 1..truncate_page_num + 1 {
        self.buffers.remove(index as u64);
      }
    } else if self.length > length {
      let delete_length =
        ((current_last_page_num + 1) * self.page_size) - length as usize;
      // Make sure to zero the remainder to not leave anything but
      // zeros lying around.
      self.zero(length, delete_length as u64);
    }

    // Set new length
    self.length = length;

    Ok(())
  }

  async fn len(&mut self) -> Result<u64, RandomAccessError> {
    Ok(self.length)
  }

  async fn is_empty(&mut self) -> Result<bool, RandomAccessError> {
    Ok(self.length == 0)
  }
}