1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//! A vector-like type that allows for aggregate operations similar to python's `pandas.Series`.
//!
// TODO: add info on performance.
//!
//! # Examples
//! You can create a new [`Series`] using [`new`]:
//!
//! [`Series`]: ./struct.Series.html
//! [`new`]: ./struct.Series.html#method.new
//! ```
//! use raccoon::{Series, DataType};
//!
//! // create a series with name "Name" containing integers (defaults to `i32`)
//! let series = Series::new("Name".to_owned(), DataType::Integer);
//! ```
//!
//! Alternatively, you can create a `Series` with data [using a vector]:
//!
//! [using a vector]: ./struct.Series.html#method.from_vector
//! ```
//! use raccoon::{Series, DataEntry};
//!
//! let v = vec![true, false, true];
//! let series = Series::from_vector("bools".to_owned(), v);
//!
//! // data type is infered from data passed to it
//! assert_eq!(series[1usize], DataEntry::Boolean(false));
//! ```
//!
//! You can also push new values onto the end of a `Series`:
//! ```
//! use raccoon::{Series, DataEntry, DataType};
//!
//! let mut series = Series::from(vec![0u32, 1u32, 2u32]);
//! assert_eq!(series.data_type(), &DataType::UInteger);
//!
//! let result = series.push(3u32);
//! assert!(result.is_ok());
//! assert_eq!(series[3usize], DataEntry::UInteger(3u32));
//!
//! let result = series.push(false);
//! assert!(result.is_err());
//!
//! // you can also push vectors
//! let _ = series.push_vec(vec![4u32, 5u32, 6u32]);
//! assert_eq!(series[5usize], DataEntry::UInteger(5u32));
//!
//! // or push `DataEntry`s
//! let _ = series.push_entry(DataEntry::UInteger(7u32));
//! let _ = series.push_entry_vec(vec![DataEntry::UInteger(8u32), DataEntry::UInteger(9u32)]);
//! assert_eq!(series[9usize], DataEntry::UInteger(9u32));
//! ```


use entry::{DataEntry, DataType};
use error::{RaccoonResult, RaccoonError};

use std::ops::Index;

/// A growable, named series. This tries to conform to the behaviour of python's `pandas.Series`.
///
/// # Examples
/// ```
/// use raccoon::{Series, DataType, DataEntry};
///
/// let mut series = Series::new("My Series".to_owned(), DataType::Double);
/// series.push(3.45f64);
/// series.push(67.8f64);
///
/// assert_eq!(series.len(), 2);
/// assert_eq!(series[0], DataEntry::Double(3.45));
///
/// series.push_vec(vec![2.0f64, 2.1, 2.2, 2.3]);
/// ```
///
/// In general, this can be seen as a special type of vector, allowing aggregate operations. However, one major
/// major difference, is the fact that a `Series` **cannot be indexed mutably**. Hence code such as the following will
/// cause a compilation error:
/// ```ignore
/// let mut series = Series::from(vec![1, 2, 3]);
/// series[0] = 5;          // compile time error
/// ```
/// The reason for prohibiting mutable indexing is to ensure data type integrity. Code such as the following would
/// otherwise run without problems:
/// ```ignore
/// // creating a series containing boolean values
/// let mut series = Series::from(vec![true, false, true]);
///
/// // setting the second value to an integer
/// series[1] = DataEntry::Integer(32);     // should NOT be allowed!!
/// ```
#[derive(Debug, Clone)]
pub struct Series {
    name: String,
    entries: Vec<DataEntry>,
    data_type: DataType,
}

impl Series {
    /// Constructs a new, empty `Series` with the specified name and data type.
    ///
    /// # Example
    /// ```
    /// use raccoon::{Series, DataType};
    ///
    /// let series = Series::new("My Series".to_owned(), DataType::Float);
    /// assert!(series.is_empty());
    /// assert_eq!("My Series", series.name());
    /// ```
    pub fn new(name: String, data_type: DataType) -> Series {
        Series {
            name: name,
            entries: Vec::new(),
            data_type: data_type
        }
    }

    /// Constructs a new, empty `Series` with the specified name, data type, and capacity.
    ///
    /// The series will be able to hold exactly `capacity` elements without reallocating. It is important to note that
    /// although the returned series will have the _capacity_ specified, the series will have zero length. See Rust's
    /// documentation of `std::vec::Vec<T>` for the difference between length and capacity.
    ///
    /// # Example
    /// ```
    /// use raccoon::{Series, DataType, DataEntry};
    ///
    /// let mut series = Series::with_capacity("series1".to_owned(), DataType::Integer, 10);
    ///
    /// // the series contain no items even though it has capacity for more
    /// assert!(series.is_empty());
    ///
    /// // these are all done without reallocation
    /// for i in 0i32..10i32 {
    ///     series.push(i);
    /// }
    ///
    /// // ... but this may make the series reallocate
    /// series.push(11);
    /// ```
    pub fn with_capacity(name: String, data_type: DataType, capacity: usize) -> Series {
        Series {
            name: name,
            entries: Vec::with_capacity(capacity),
            data_type: data_type
        }
    }

    /// Append a data entry to the series.
    ///
    /// As this uses type inference to add the data entry, ensure the append occured. `data` must match the internal
    /// type used by the series.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType, DataEntry};
    /// // using `i32` to create the series
    /// let mut series = Series::from(vec![0, 1, 2, 3]);
    ///
    /// // ... hence the type is `DataType::Integer`
    /// assert_eq!(series.data_type(), &DataType::Integer);
    ///
    /// // works
    /// let result = series.push(4);
    /// assert!(result.is_ok());
    /// assert_eq!(series[4], DataEntry::Integer(4));
    ///
    /// // fails
    /// let result = series.push(5.0);      // f32
    /// assert!(result.is_err());
    /// ```
    pub fn push<T>(&mut self, data: T) -> RaccoonResult where T: Into<DataEntry> {
        let data_entry: DataEntry = data.into();
        self.push_entry(data_entry)
    }

    /// Extend the series by a data vector.
    ///
    /// As this uses type inference to add the data entry, ensure the append occured. `data` must match the internal
    /// type used by the series.
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType, DataEntry};
    /// // using `i32` to create the series
    /// let mut series = Series::from(vec![0, 1, 2, 3]);
    ///
    /// // ... hence the type is `DataType::Integer`
    /// assert_eq!(series.data_type(), &DataType::Integer);
    ///
    /// // works
    /// let result = series.push_vec(vec![4, 5, 6]);
    /// assert!(result.is_ok());
    /// assert_eq!(series[6], DataEntry::Integer(6));
    ///
    /// // fails
    /// let result = series.push_vec(vec![3.4, 5.6, 1.2]);      // f32
    /// assert!(result.is_err());
    /// ```
    pub fn push_vec<T>(&mut self, vector: Vec<T>) -> RaccoonResult where T: Into<DataEntry> {
        let entries: Vec<DataEntry> = vector.into_iter().map(|x| x.into()).collect();
        self.push_entry_vec(entries)
    }

    /// Append a `DataEntry` object to the series.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType, DataEntry};
    /// // using `i32` to create the series
    /// let mut series = Series::from(vec![0, 1, 2, 3]);
    ///
    /// // ... hence the type is `DataType::Integer`
    /// assert_eq!(series.data_type(), &DataType::Integer);
    ///
    /// // works
    /// let result = series.push_entry(DataEntry::Integer(4));
    /// assert!(result.is_ok());
    /// assert_eq!(series[4], DataEntry::Integer(4));
    ///
    /// // fails
    /// let result = series.push(DataEntry::Float(5.0));
    /// assert!(result.is_err());
    /// ```
    pub fn push_entry(&mut self, data_entry: DataEntry) -> RaccoonResult {
        if !self.verify_type(data_entry.data_type()) {
            return Err(RaccoonError::InvalidType);
        }
        self.entries.push(data_entry);
        Ok(())
    }

    /// Append a `DataEntry` vector to the series.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType, DataEntry};
    /// // using `i32` to create the series
    /// let mut series = Series::from(vec![0, 1, 2, 3]);
    ///
    /// // ... hence the type is `DataType::Integer`
    /// assert_eq!(series.data_type(), &DataType::Integer);
    ///
    /// // works
    /// let vector = vec![
    ///     DataEntry::Integer(4),
    ///     DataEntry::Integer(5),
    ///     DataEntry::Integer(6),
    /// ];
    /// let result = series.push_entry_vec(vector);
    /// assert!(result.is_ok());
    /// assert_eq!(series[6], DataEntry::Integer(6));
    ///
    /// // fails
    /// let vector = vec![
    ///     DataEntry::Float(3.4),
    ///     DataEntry::Float(5.6),
    ///     DataEntry::Float(1.2),
    /// ];
    /// let result = series.push_entry_vec(vector);
    /// assert!(result.is_err());
    /// ```
    pub fn push_entry_vec(&mut self, vector: Vec<DataEntry>) -> RaccoonResult {
        if vector.iter().any(|ref x| !self.verify_type(x.data_type())) {
            return Err(RaccoonError::InvalidType);
        }
        for item in vector {
            self.entries.push(item);
        }
        Ok(())
    }

    /// Pops an entry from the end of the series.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType, DataEntry};
    /// let mut series = Series::new("series1".to_owned(), DataType::Boolean);
    /// series.push(true);
    ///
    /// assert_eq!(1, series.len());
    /// let result = series.pop_entry();
    /// assert_eq!(Some(DataEntry::Boolean(true)), result);
    ///
    /// assert!(series.is_empty());
    /// let result = series.pop_entry();
    /// assert_eq!(None, result);
    /// ```
    pub fn pop_entry(&mut self) -> Option<DataEntry> {
        self.entries.pop()
    }

    /// Returns the length of the series.
    ///
    /// # Example
    /// ```
    /// # use raccoon::Series;
    /// let series = Series::from(vec![1, 2, 3]);
    /// assert_eq!(3, series.len())
    /// ```
    pub fn len(&self) -> usize {
        self.entries.len()
    }

    /// Converts the series into another data type.
    ///
    /// Note that some data types cannot be converted into one another as the conversion makes no sense. This results in
    /// `DataType::NA` entries. The conversion from numerical types into boolean values is performed by checking
    /// equality with 0.
    ///
    /// # Conversions that result in `DataType::NA`
    /// - `DataType::Text` into another type that cannot be parsed into another type using `String::from()`. For example
    ///   the conversion shown in the third example of this docstring.
    /// - `DataType::Character` into `DataType::Boolean`.
    /// - Anything except `DataType::Text` into `DataType::Character`. This can be somewhat circumvented by converting
    ///   to `DataType::Text` and then into `DataType::Character`.
    /// - Any signed numerical type into an unsigned one.
    /// - `DataType::Long` into `DataType::Integer`.
    /// - `DataType::ULong` into `DataType::UInteger`.
    ///
    /// # Examples
    /// A working conversion:
    /// ```
    /// # use raccoon::{Series, DataType};
    /// let mut series = Series::from(vec![true, true, false, true]);
    /// series.convert_to(&DataType::Integer);
    /// assert_eq!(series, vec![1, 1, 0, 1]);
    /// ```
    ///
    /// A working yet lossy conversion:
    /// ```
    /// # use raccoon::{Series, DataType};
    /// // build double precision floating point series
    /// let mut series = Series::from(vec![123.456f64, 456.789f64]);
    /// assert_eq!(series.data_type(), &DataType::Double);
    ///
    /// // convert to single precision floating point
    /// series.convert_to(&DataType::Float);
    /// assert_eq!(series.data_type(), &DataType::Float);
    /// assert_eq!(series, vec![123.456f32, 456.789f32]);
    /// ```
    ///
    /// A conversion that makes no sense:
    /// ```
    /// # use raccoon::{Series, DataType, DataEntry};
    /// let mut series = Series::from(vec!["some", "random", "words"]);
    /// series.convert_to(&DataType::Character);
    /// assert_eq!(series, vec![DataEntry::NA, DataEntry::NA, DataEntry::NA]);
    /// ```
    pub fn convert_to(&mut self, data_type: &DataType) {
        let mut converted_entries: Vec<DataEntry> = Vec::new();
        for entry in &self.entries {
            converted_entries.push(entry.convert_to(data_type));
        }
        self.entries = converted_entries;
        self.data_type = data_type.clone();
    }

    /// Getter for the series' data type.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType};
    /// let series = Series::new("my series".to_owned(), DataType::ULong);
    /// assert_eq!(series.data_type(), &DataType::ULong);
    /// ```
    pub fn data_type(&self) -> &DataType {
        &self.data_type
    }

    /// Verifies the validity of the datatype. This checks if a given data type is conform to this series.
    ///
    /// In other words, this will return `true` if `data_type` is `DataType::NA` or equal to the data type of the
    /// series.
    fn verify_type(&self, data_type: DataType) -> bool {
        if data_type != self.data_type && data_type != DataType::NA {
            false
        } else {
            true
        }
    }

    /// Builds a `Series` from a vector of items and gives the series a name.
    ///
    /// # Example
    /// ```
    /// # use raccoon::Series;
    /// let series = Series::from_vector("my series".to_owned(), vec![1, 2, 3]);
    /// assert_eq!(series.name(), "my series");
    /// assert_eq!(series, vec![1, 2, 3]);
    /// ```
    pub fn from_vector<T>(name: String, vector: Vec<T>) -> Series where T: Into<DataEntry> {
        let entries: Vec<DataEntry> = vector.into_iter().map(|x| x.into()).collect();
        let mut data_type = DataType::NA;
        if !entries.is_empty() {
            data_type = entries[0].data_type().clone();
        }
        Series {
            name: name,
            entries: entries,
            data_type: data_type,
        }
    }

    /// Getter for the series' name.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType};
    /// let series = Series::new("custom name".to_owned(), DataType::Character);
    /// assert_eq!(series.name(), "custom name");
    /// ```
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Setter for the series' name.
    ///
    /// # Example
    /// ```
    /// # use raccoon::Series;
    /// let mut series = Series::from(vec!['a', 'b', 'c']);
    /// assert_eq!(series.name(), "Series1");
    ///
    /// // change name
    /// series.set_name("custom name".to_owned());
    /// assert_eq!(series.name(), "custom name");
    pub fn set_name(&mut self, name: String) {
        self.name = name;
    }

    /// Checks if the series is empty.
    ///
    /// # Example
    /// ```
    /// # use raccoon::{Series, DataType};
    /// let mut series = Series::new("City".to_owned(), DataType::Text);
    /// assert!(series.is_empty());
    ///
    /// series.push("Zürich");
    /// assert!(!series.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.entries.is_empty()
    }
}

impl<T> From<Vec<T>> for Series where T: Into<DataEntry> {
    fn from(vector: Vec<T>) -> Self {
        Series::from_vector("Series1".to_owned(), vector)
    }
}

impl Index<usize> for Series {
    type Output = DataEntry;

    fn index(&self, idx: usize) -> &Self::Output {
        &self.entries[idx]
    }
}

impl PartialEq for Series {
    fn eq(&self, other: &Series) -> bool {
        if self.name == other.name && self.data_type == other.data_type && self.entries.len() == other.entries.len() {
            if self.entries.iter().zip(other.entries.iter()).all(|(ref x1, ref x2)| { x1 == x2 }) {
                true
            } else {
                false
            }
        } else {
            false
        }
    }
}

impl<T> PartialEq<Vec<T>> for Series where DataEntry: From<T>, T: Clone {
    fn eq(&self, other: &Vec<T>) -> bool {
        if self.entries.iter().zip(other.iter()).all(|(x1, x2)| { *x1 == DataEntry::from(x2.clone()) }) {
            true
        } else {
            false
        }
    }
}



#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn create_series() {
        let name = String::from("Dog breeds");
        let mut series = Series::new(name, DataType::Text);
        let result = series.push_entry(DataEntry::Text("Labrador".to_owned()));
        assert!(result.is_ok());
        let result = series.push_entry(DataEntry::NA);
        assert!(result.is_ok());
        let result = series.push_entry(DataEntry::Text("Golden retriever".to_owned()));
        assert!(result.is_ok());
        let result = series.push_entry(DataEntry::Integer(25));
        assert!(result.is_err());
        assert_eq!("Dog breeds", series.name());
        assert_eq!(3, series.len());
    }

    #[test]
    fn convert_series() {
        let name = String::from("Numbers");
        let mut series = Series::new(name, DataType::Text);
        let items = vec![
            DataEntry::Text("1".to_owned()),
            DataEntry::Text("2".to_owned()),
            DataEntry::Text("3".to_owned()),
            DataEntry::Text("".to_owned()),
            DataEntry::Text("4".to_owned())
        ];
        let result = series.push_entry_vec(items);
        assert!(result.is_ok());
        series.convert_to(&DataType::UInteger);
        assert_eq!("Numbers", series.name());
        assert_eq!(&DataType::UInteger, series.data_type());
        assert_eq!(DataEntry::UInteger(1u32), series[0usize]);
        assert_eq!(DataEntry::UInteger(2u32), series[1usize]);
        assert_eq!(DataEntry::UInteger(3u32), series[2usize]);
        assert_eq!(DataEntry::NA, series[3usize]);
        assert_eq!(DataEntry::UInteger(4u32), series[4usize]);
    }

    #[test]
    fn push_raw_entries() {
        let mut series = Series::new("name".to_owned(), DataType::Integer);
        let result = series.push_vec(vec![0, 1, 2]);
        assert!(result.is_ok());
        assert_eq!(DataEntry::Integer(0i32), series[0usize]);
        assert_eq!(DataEntry::Integer(1i32), series[1usize]);
        assert_eq!(DataEntry::Integer(2i32), series[2usize]);
        let result = series.push(3);
        assert!(result.is_ok());
        assert_eq!(DataEntry::Integer(3i32), series[3usize]);
        let result = series.push(true);
        assert!(result.is_err());
    }

    #[test]
    fn pop_items() {
        let mut series = Series::from(vec![1, 2, 3, 4]);
        assert_eq!(Some(DataEntry::Integer(4i32)), series.pop_entry());
        assert_eq!(Some(DataEntry::Integer(3i32)), series.pop_entry());
        assert_eq!(Some(DataEntry::Integer(2i32)), series.pop_entry());
        assert_eq!(Some(DataEntry::Integer(1i32)), series.pop_entry());
        assert_eq!(None, series.pop_entry());
        assert_eq!(None, series.pop_entry());
        assert!(series.is_empty());
    }

    #[test]
    fn construction_from_vector() {
        let vec = vec![1, 2, 3, 4, 5, 6, 7];
        let series = Series::from_vector("Some series".to_owned(), vec);
        assert_eq!("Some series", series.name());
        assert_eq!(&DataType::Integer, series.data_type());
        assert_eq!(DataEntry::Integer(1), series[0usize]);
        assert_eq!(DataEntry::Integer(2), series[1usize]);
        assert_eq!(DataEntry::Integer(3), series[2usize]);
        assert_eq!(DataEntry::Integer(4), series[3usize]);
        assert_eq!(DataEntry::Integer(5), series[4usize]);
        assert_eq!(DataEntry::Integer(6), series[5usize]);
        assert_eq!(DataEntry::Integer(7), series[6usize]);

        let vec: Vec<u64> = Vec::new();
        let series = Series::from_vector("empty".to_owned(), vec);
        assert_eq!("empty", series.name());
        assert_eq!(&DataType::NA, series.data_type());
    }

    #[test]
    #[should_panic(expected="index out of bounds: the len is 0 but the index is 0")]
    fn empty_indexing() {
        let vec: Vec<u64> = Vec::new();
        let series = Series::from(vec);
        let _ = &series[0_usize];
    }

    #[test]
    fn construction_from_trait() {
        let vec = vec![true, false, false, true, false, true, true];
        let mut series = Series::from(vec);
        assert_eq!("Series1", series.name());
        series.set_name("My new name".to_owned());
        assert_eq!("My new name", series.name());
        assert_eq!(&DataType::Boolean, series.data_type());
        assert_eq!(DataEntry::Boolean(true), series[0usize]);
        assert_eq!(DataEntry::Boolean(false), series[1usize]);
        assert_eq!(DataEntry::Boolean(false), series[2usize]);
        assert_eq!(DataEntry::Boolean(true), series[3usize]);
        assert_eq!(DataEntry::Boolean(false), series[4usize]);
        assert_eq!(DataEntry::Boolean(true), series[5usize]);
        assert_eq!(DataEntry::Boolean(true), series[6usize]);
        assert_eq!(7, series.len());
    }

    #[test]
    fn comparisions() {
        let series1 = Series::from(vec![1, 2, 3, 4]);
        assert_eq!(series1, vec![1, 2, 3, 4]);
        let series2 = Series::from(vec![1, 2, 3, 4]);
        assert_eq!(series1, series2);
        let mut series3 = Series::from(vec![1, 2, 3, 4]);
        series3.set_name("some random name".to_owned());
        assert_ne!(series1, series3);
        let series4 = Series::from(vec![1.0, 2.0, 3.0, 4.0]);
        assert_ne!(series1, series4);
    }
}