1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//! Shortcuts that span lexer/parser abstraction.
//!
//! The way Rust works, parser doesn't necessary parse text, and you might
//! tokenize text without parsing it further. So, it makes sense to keep
//! abstract token parsing, and string tokenization as completely separate
//! layers.
//!
//! However, often you do pares text into syntax trees and the glue code for
//! that needs to live somewhere. Rather than putting it to lexer or parser, we
//! use a separate shortcuts module for that.

use std::mem;

use crate::{
    LexedStr, Step,
    SyntaxKind::{self, *},
};

#[derive(Debug)]
pub enum StrStep<'a> {
    Token { kind: SyntaxKind, text: &'a str },
    Enter { kind: SyntaxKind },
    Exit,
    Error { msg: &'a str, pos: usize },
}

impl LexedStr<'_> {
    pub fn to_input(&self) -> crate::Input {
        let _p = tracing::span!(tracing::Level::INFO, "LexedStr::to_input").entered();
        let mut res = crate::Input::default();
        let mut was_joint = false;
        for i in 0..self.len() {
            let kind = self.kind(i);
            if kind.is_trivia() {
                was_joint = false
            } else if kind == SyntaxKind::IDENT {
                let token_text = self.text(i);
                let contextual_kw =
                    SyntaxKind::from_contextual_keyword(token_text).unwrap_or(SyntaxKind::IDENT);
                res.push_ident(contextual_kw);
            } else {
                if was_joint {
                    res.was_joint();
                }
                res.push(kind);
                // Tag the token as joint if it is float with a fractional part
                // we use this jointness to inform the parser about what token split
                // event to emit when we encounter a float literal in a field access
                if kind == SyntaxKind::FLOAT_NUMBER {
                    if !self.text(i).ends_with('.') {
                        res.was_joint();
                    } else {
                        was_joint = false;
                    }
                } else {
                    was_joint = true;
                }
            }
        }
        res
    }

    /// NB: only valid to call with Output from Reparser/TopLevelEntry.
    pub fn intersperse_trivia(
        &self,
        output: &crate::Output,
        sink: &mut dyn FnMut(StrStep<'_>),
    ) -> bool {
        let mut builder = Builder { lexed: self, pos: 0, state: State::PendingEnter, sink };

        for event in output.iter() {
            match event {
                Step::Token { kind, n_input_tokens: n_raw_tokens } => {
                    builder.token(kind, n_raw_tokens)
                }
                Step::FloatSplit { ends_in_dot: has_pseudo_dot } => {
                    builder.float_split(has_pseudo_dot)
                }
                Step::Enter { kind } => builder.enter(kind),
                Step::Exit => builder.exit(),
                Step::Error { msg } => {
                    let text_pos = builder.lexed.text_start(builder.pos);
                    (builder.sink)(StrStep::Error { msg, pos: text_pos });
                }
            }
        }

        match mem::replace(&mut builder.state, State::Normal) {
            State::PendingExit => {
                builder.eat_trivias();
                (builder.sink)(StrStep::Exit);
            }
            State::PendingEnter | State::Normal => unreachable!(),
        }

        // is_eof?
        builder.pos == builder.lexed.len()
    }
}

struct Builder<'a, 'b> {
    lexed: &'a LexedStr<'a>,
    pos: usize,
    state: State,
    sink: &'b mut dyn FnMut(StrStep<'_>),
}

enum State {
    PendingEnter,
    Normal,
    PendingExit,
}

impl Builder<'_, '_> {
    fn token(&mut self, kind: SyntaxKind, n_tokens: u8) {
        match mem::replace(&mut self.state, State::Normal) {
            State::PendingEnter => unreachable!(),
            State::PendingExit => (self.sink)(StrStep::Exit),
            State::Normal => (),
        }
        self.eat_trivias();
        self.do_token(kind, n_tokens as usize);
    }

    fn float_split(&mut self, has_pseudo_dot: bool) {
        match mem::replace(&mut self.state, State::Normal) {
            State::PendingEnter => unreachable!(),
            State::PendingExit => (self.sink)(StrStep::Exit),
            State::Normal => (),
        }
        self.eat_trivias();
        self.do_float_split(has_pseudo_dot);
    }

    fn enter(&mut self, kind: SyntaxKind) {
        match mem::replace(&mut self.state, State::Normal) {
            State::PendingEnter => {
                (self.sink)(StrStep::Enter { kind });
                // No need to attach trivias to previous node: there is no
                // previous node.
                return;
            }
            State::PendingExit => (self.sink)(StrStep::Exit),
            State::Normal => (),
        }

        let n_trivias =
            (self.pos..self.lexed.len()).take_while(|&it| self.lexed.kind(it).is_trivia()).count();
        let leading_trivias = self.pos..self.pos + n_trivias;
        let n_attached_trivias = n_attached_trivias(
            kind,
            leading_trivias.rev().map(|it| (self.lexed.kind(it), self.lexed.text(it))),
        );
        self.eat_n_trivias(n_trivias - n_attached_trivias);
        (self.sink)(StrStep::Enter { kind });
        self.eat_n_trivias(n_attached_trivias);
    }

    fn exit(&mut self) {
        match mem::replace(&mut self.state, State::PendingExit) {
            State::PendingEnter => unreachable!(),
            State::PendingExit => (self.sink)(StrStep::Exit),
            State::Normal => (),
        }
    }

    fn eat_trivias(&mut self) {
        while self.pos < self.lexed.len() {
            let kind = self.lexed.kind(self.pos);
            if !kind.is_trivia() {
                break;
            }
            self.do_token(kind, 1);
        }
    }

    fn eat_n_trivias(&mut self, n: usize) {
        for _ in 0..n {
            let kind = self.lexed.kind(self.pos);
            assert!(kind.is_trivia());
            self.do_token(kind, 1);
        }
    }

    fn do_token(&mut self, kind: SyntaxKind, n_tokens: usize) {
        let text = &self.lexed.range_text(self.pos..self.pos + n_tokens);
        self.pos += n_tokens;
        (self.sink)(StrStep::Token { kind, text });
    }

    fn do_float_split(&mut self, has_pseudo_dot: bool) {
        let text = &self.lexed.range_text(self.pos..self.pos + 1);

        match text.split_once('.') {
            Some((left, right)) => {
                assert!(!left.is_empty());
                (self.sink)(StrStep::Enter { kind: SyntaxKind::NAME_REF });
                (self.sink)(StrStep::Token { kind: SyntaxKind::INT_NUMBER, text: left });
                (self.sink)(StrStep::Exit);

                // here we move the exit up, the original exit has been deleted in process
                (self.sink)(StrStep::Exit);

                (self.sink)(StrStep::Token { kind: SyntaxKind::DOT, text: "." });

                if has_pseudo_dot {
                    assert!(right.is_empty(), "{left}.{right}");
                    self.state = State::Normal;
                } else {
                    assert!(!right.is_empty(), "{left}.{right}");
                    (self.sink)(StrStep::Enter { kind: SyntaxKind::NAME_REF });
                    (self.sink)(StrStep::Token { kind: SyntaxKind::INT_NUMBER, text: right });
                    (self.sink)(StrStep::Exit);

                    // the parser creates an unbalanced start node, we are required to close it here
                    self.state = State::PendingExit;
                }
            }
            None => {
                // illegal float literal which doesn't have dot in form (like 1e0)
                // we should emit an error node here
                (self.sink)(StrStep::Error { msg: "illegal float literal", pos: self.pos });
                (self.sink)(StrStep::Enter { kind: SyntaxKind::ERROR });
                (self.sink)(StrStep::Token { kind: SyntaxKind::FLOAT_NUMBER, text });
                (self.sink)(StrStep::Exit);

                // move up
                (self.sink)(StrStep::Exit);

                self.state = if has_pseudo_dot { State::Normal } else { State::PendingExit };
            }
        }

        self.pos += 1;
    }
}

fn n_attached_trivias<'a>(
    kind: SyntaxKind,
    trivias: impl Iterator<Item = (SyntaxKind, &'a str)>,
) -> usize {
    match kind {
        CONST | ENUM | FN | IMPL | MACRO_CALL | MACRO_DEF | MACRO_RULES | MODULE | RECORD_FIELD
        | STATIC | STRUCT | TRAIT | TUPLE_FIELD | TYPE_ALIAS | UNION | USE | VARIANT
        | EXTERN_CRATE => {
            let mut res = 0;
            let mut trivias = trivias.enumerate().peekable();

            while let Some((i, (kind, text))) = trivias.next() {
                match kind {
                    WHITESPACE if text.contains("\n\n") => {
                        // we check whether the next token is a doc-comment
                        // and skip the whitespace in this case
                        if let Some((COMMENT, peek_text)) = trivias.peek().map(|(_, pair)| pair) {
                            if is_outer(peek_text) {
                                continue;
                            }
                        }
                        break;
                    }
                    COMMENT => {
                        if is_inner(text) {
                            break;
                        }
                        res = i + 1;
                    }
                    _ => (),
                }
            }
            res
        }
        _ => 0,
    }
}

fn is_outer(text: &str) -> bool {
    if text.starts_with("////") || text.starts_with("/***") {
        return false;
    }
    text.starts_with("///") || text.starts_with("/**")
}

fn is_inner(text: &str) -> bool {
    text.starts_with("//!") || text.starts_with("/*!")
}