1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! `mbe` (short for Macro By Example) crate contains code for handling
//! `macro_rules` macros. It uses `TokenTree` (from `tt` package) as the
//! interface, although it contains some code to bridge `SyntaxNode`s and
//! `TokenTree`s as well!

mod parser;
mod expander;
mod syntax_bridge;
mod tt_iter;
mod subtree_source;

#[cfg(test)]
mod tests;

#[cfg(test)]
mod benchmark;
mod token_map;

use std::fmt;

pub use tt::{Delimiter, DelimiterKind, Punct};

use crate::{
    parser::{parse_pattern, parse_template, MetaTemplate, Op},
    tt_iter::TtIter,
};

#[derive(Debug, PartialEq, Eq)]
pub enum ParseError {
    UnexpectedToken(String),
    Expected(String),
    InvalidRepeat,
    RepetitionEmptyTokenTree,
}

#[derive(Debug, PartialEq, Eq, Clone)]
pub enum ExpandError {
    NoMatchingRule,
    UnexpectedToken,
    BindingError(String),
    ConversionError,
    ProcMacroError(tt::ExpansionError),
    UnresolvedProcMacro,
    Other(String),
}

impl From<tt::ExpansionError> for ExpandError {
    fn from(it: tt::ExpansionError) -> Self {
        ExpandError::ProcMacroError(it)
    }
}

impl fmt::Display for ExpandError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ExpandError::NoMatchingRule => f.write_str("no rule matches input tokens"),
            ExpandError::UnexpectedToken => f.write_str("unexpected token in input"),
            ExpandError::BindingError(e) => f.write_str(e),
            ExpandError::ConversionError => f.write_str("could not convert tokens"),
            ExpandError::ProcMacroError(e) => e.fmt(f),
            ExpandError::UnresolvedProcMacro => f.write_str("unresolved proc macro"),
            ExpandError::Other(e) => f.write_str(e),
        }
    }
}

pub use crate::{
    syntax_bridge::{
        ast_to_token_tree, parse_exprs_with_sep, parse_to_token_tree, syntax_node_to_token_tree,
        token_tree_to_syntax_node,
    },
    token_map::TokenMap,
};

/// This struct contains AST for a single `macro_rules` definition. What might
/// be very confusing is that AST has almost exactly the same shape as
/// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident`
/// and `$()*` have special meaning (see `Var` and `Repeat` data structures)
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MacroRules {
    rules: Vec<Rule>,
    /// Highest id of the token we have in TokenMap
    shift: Shift,
}

/// For Macro 2.0
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MacroDef {
    rules: Vec<Rule>,
    /// Highest id of the token we have in TokenMap
    shift: Shift,
}

#[derive(Clone, Debug, PartialEq, Eq)]
struct Rule {
    lhs: MetaTemplate,
    rhs: MetaTemplate,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Shift(u32);

impl Shift {
    fn new(tt: &tt::Subtree) -> Shift {
        // Note that TokenId is started from zero,
        // We have to add 1 to prevent duplication.
        let value = max_id(tt).map_or(0, |it| it + 1);
        return Shift(value);

        // Find the max token id inside a subtree
        fn max_id(subtree: &tt::Subtree) -> Option<u32> {
            subtree
                .token_trees
                .iter()
                .filter_map(|tt| match tt {
                    tt::TokenTree::Subtree(subtree) => {
                        let tree_id = max_id(subtree);
                        match subtree.delimiter {
                            Some(it) if it.id != tt::TokenId::unspecified() => {
                                Some(tree_id.map_or(it.id.0, |t| t.max(it.id.0)))
                            }
                            _ => tree_id,
                        }
                    }
                    tt::TokenTree::Leaf(tt::Leaf::Ident(ident))
                        if ident.id != tt::TokenId::unspecified() =>
                    {
                        Some(ident.id.0)
                    }
                    _ => None,
                })
                .max()
        }
    }

    /// Shift given TokenTree token id
    fn shift_all(self, tt: &mut tt::Subtree) {
        for t in &mut tt.token_trees {
            match t {
                tt::TokenTree::Leaf(leaf) => match leaf {
                    tt::Leaf::Ident(ident) => ident.id = self.shift(ident.id),
                    tt::Leaf::Punct(punct) => punct.id = self.shift(punct.id),
                    tt::Leaf::Literal(lit) => lit.id = self.shift(lit.id),
                },
                tt::TokenTree::Subtree(tt) => {
                    if let Some(it) = tt.delimiter.as_mut() {
                        it.id = self.shift(it.id);
                    };
                    self.shift_all(tt)
                }
            }
        }
    }

    fn shift(self, id: tt::TokenId) -> tt::TokenId {
        if id == tt::TokenId::unspecified() {
            return id;
        }
        tt::TokenId(id.0 + self.0)
    }

    fn unshift(self, id: tt::TokenId) -> Option<tt::TokenId> {
        id.0.checked_sub(self.0).map(tt::TokenId)
    }
}

#[derive(Debug, Eq, PartialEq)]
pub enum Origin {
    Def,
    Call,
}

impl MacroRules {
    pub fn parse(tt: &tt::Subtree) -> Result<MacroRules, ParseError> {
        // Note: this parsing can be implemented using mbe machinery itself, by
        // matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing
        // manually seems easier.
        let mut src = TtIter::new(tt);
        let mut rules = Vec::new();
        while src.len() > 0 {
            let rule = Rule::parse(&mut src, true)?;
            rules.push(rule);
            if let Err(()) = src.expect_char(';') {
                if src.len() > 0 {
                    return Err(ParseError::Expected("expected `;`".to_string()));
                }
                break;
            }
        }

        for rule in &rules {
            validate(&rule.lhs)?;
        }

        Ok(MacroRules { rules, shift: Shift::new(tt) })
    }

    pub fn expand(&self, tt: &tt::Subtree) -> ExpandResult<tt::Subtree> {
        // apply shift
        let mut tt = tt.clone();
        self.shift.shift_all(&mut tt);
        expander::expand_rules(&self.rules, &tt)
    }

    pub fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId {
        self.shift.shift(id)
    }

    pub fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, Origin) {
        match self.shift.unshift(id) {
            Some(id) => (id, Origin::Call),
            None => (id, Origin::Def),
        }
    }
}

impl MacroDef {
    pub fn parse(tt: &tt::Subtree) -> Result<MacroDef, ParseError> {
        let mut src = TtIter::new(tt);
        let mut rules = Vec::new();

        if Some(tt::DelimiterKind::Brace) == tt.delimiter_kind() {
            cov_mark::hit!(parse_macro_def_rules);
            while src.len() > 0 {
                let rule = Rule::parse(&mut src, true)?;
                rules.push(rule);
                if let Err(()) = src.expect_any_char(&[';', ',']) {
                    if src.len() > 0 {
                        return Err(ParseError::Expected(
                            "expected `;` or `,` to delimit rules".to_string(),
                        ));
                    }
                    break;
                }
            }
        } else {
            cov_mark::hit!(parse_macro_def_simple);
            let rule = Rule::parse(&mut src, false)?;
            if src.len() != 0 {
                return Err(ParseError::Expected("remain tokens in macro def".to_string()));
            }
            rules.push(rule);
        }
        for rule in &rules {
            validate(&rule.lhs)?;
        }

        Ok(MacroDef { rules, shift: Shift::new(tt) })
    }

    pub fn expand(&self, tt: &tt::Subtree) -> ExpandResult<tt::Subtree> {
        // apply shift
        let mut tt = tt.clone();
        self.shift.shift_all(&mut tt);
        expander::expand_rules(&self.rules, &tt)
    }

    pub fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId {
        self.shift.shift(id)
    }

    pub fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, Origin) {
        match self.shift.unshift(id) {
            Some(id) => (id, Origin::Call),
            None => (id, Origin::Def),
        }
    }
}

impl Rule {
    fn parse(src: &mut TtIter, expect_arrow: bool) -> Result<Self, ParseError> {
        let lhs = src
            .expect_subtree()
            .map_err(|()| ParseError::Expected("expected subtree".to_string()))?;
        if expect_arrow {
            src.expect_char('=').map_err(|()| ParseError::Expected("expected `=`".to_string()))?;
            src.expect_char('>').map_err(|()| ParseError::Expected("expected `>`".to_string()))?;
        }
        let rhs = src
            .expect_subtree()
            .map_err(|()| ParseError::Expected("expected subtree".to_string()))?;

        let lhs = MetaTemplate(parse_pattern(lhs)?);
        let rhs = MetaTemplate(parse_template(rhs)?);

        Ok(crate::Rule { lhs, rhs })
    }
}

fn validate(pattern: &MetaTemplate) -> Result<(), ParseError> {
    for op in pattern.iter() {
        match op {
            Op::Subtree { tokens, .. } => validate(tokens)?,
            Op::Repeat { tokens: subtree, separator, .. } => {
                // Checks that no repetition which could match an empty token
                // https://github.com/rust-lang/rust/blob/a58b1ed44f5e06976de2bdc4d7dc81c36a96934f/src/librustc_expand/mbe/macro_rules.rs#L558

                if separator.is_none()
                    && subtree.iter().all(|child_op| {
                        match child_op {
                            Op::Var { kind, .. } => {
                                // vis is optional
                                if kind.as_ref().map_or(false, |it| it == "vis") {
                                    return true;
                                }
                            }
                            Op::Repeat { kind, .. } => {
                                return matches!(
                                    kind,
                                    parser::RepeatKind::ZeroOrMore | parser::RepeatKind::ZeroOrOne
                                )
                            }
                            Op::Leaf(_) => {}
                            Op::Subtree { .. } => {}
                        }
                        false
                    })
                {
                    return Err(ParseError::RepetitionEmptyTokenTree);
                }
                validate(subtree)?
            }
            _ => (),
        }
    }
    Ok(())
}

#[derive(Debug, Clone, Eq, PartialEq)]
pub struct ExpandResult<T> {
    pub value: T,
    pub err: Option<ExpandError>,
}

impl<T> ExpandResult<T> {
    pub fn ok(value: T) -> Self {
        Self { value, err: None }
    }

    pub fn only_err(err: ExpandError) -> Self
    where
        T: Default,
    {
        Self { value: Default::default(), err: Some(err) }
    }

    pub fn str_err(err: String) -> Self
    where
        T: Default,
    {
        Self::only_err(ExpandError::Other(err))
    }

    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> ExpandResult<U> {
        ExpandResult { value: f(self.value), err: self.err }
    }

    pub fn result(self) -> Result<T, ExpandError> {
        self.err.map_or(Ok(self.value), Err)
    }
}

impl<T: Default> From<Result<T, ExpandError>> for ExpandResult<T> {
    fn from(result: Result<T, ExpandError>) -> Self {
        result.map_or_else(Self::only_err, Self::ok)
    }
}