1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use std::option::Option;
use num::complex::Complex64;
use rand::random;

use crate::gate::Gate;
use crate::state::State;
use crate::address_decoder::{AddressDecoder, AddressedBit, is_valid_addresses};


fn abs(c: Complex64) -> f64 {
	c.re * c.re + c.im * c.im
}


pub struct QVM {
	// size of qubits
	bits: usize,

	// states of each qubits
	states: Vec<State>,

	// coefficient of each states and its absolute value is its probability
	// size of state is 2^bits
	// sum of all probability of basis must be 1
	register: Vec<Complex64>
}

// basic methods
impl QVM {
	pub fn new(n: usize) -> QVM {
		let default_state = State::ZERO;
		let default_basis = Complex64 {re:0.0, im:0.0};

		let mut qvm = QVM {
			bits: n,
			states: vec![default_state; n],
			register: vec![default_basis; 1 << n]
		};

		qvm.register[0] = Complex64 {re:1.0, im:0.0};

		qvm
	}

	pub fn get_bits(&self) -> usize {
		self.bits
	}

	pub fn is_superposition(&self, n: usize) -> bool {
		if n < self.bits {
			self.states[n].is_superposition()
		} else {
			true
		}
	}

}

// TODOS : management, excution functions

// management
impl QVM {
	// TODO : expend to vector
	pub fn set_superposition(&mut self, address: usize, value: u8) -> Option<bool> {
		if (value != 0 && value != 1) || address >= self.bits {
			None
		} else if self.states[address].is_superposition() {
			Some(false)
		} else if self.states[address] == value {
			self.states[address] = State::SUPERPOSITION;
			Some(true)
		} else {
			let mask = 1 << address;
			let pinned = vec![AddressedBit{address:address, bit:value}];
			let counter = AddressDecoder::new(self.bits, pinned);

			for c in counter {
				let zero : Complex64 = Complex64 {re:0.0, im:0.0};

				// probability of diffirent state of qubit must be zero
				assert_eq!(self.register[c], zero);
				self.register[c] = self.register[c ^ mask];
				self.register[c ^ mask] = zero;
			}

			self.states[address] = State::SUPERPOSITION;
			Some(true)
		}
	}

	// TODO : make run for vector of address
	pub fn measure(&mut self, address: usize) -> Option<u8> {
		if address >= self.bits {
			None
		} else if ! self.states[address].is_superposition() {
			None
		} else {
			// pick register randomly

			let mut rand : f64 = random();
			let mut raw_measurement : usize = 0;

			if rand > 1.0 {
				panic!();
			}

			for i in 0 ..  {
				rand -= abs(self.register[i]);
				if rand <= 0.0 {
					raw_measurement = i;
					break;
				}
			}

			if rand > 0.0 {
				panic!();
			}

			// collapse qubit statement

			// remove coefficient of opposite basis with measured value

			let mask = 1 << address;
			let measured = if raw_measurement & mask == 0 {0} else {1};
			let pinned = vec![AddressedBit{address:address, bit:measured}];
			let counter = AddressDecoder::new(self.bits, pinned);
			let mut removed_probability : f64 = 0.0;

			for c in counter {
				let zero : Complex64 = Complex64 {re:0.0, im:0.0};
				removed_probability += abs(self.register[c ^ mask]);
				self.register[c ^ mask] = zero;
			}

			// multiply removed value to make sum of probability 1

			let pinned = vec![AddressedBit{address:address, bit:measured}];
			let counter = AddressDecoder::new(self.bits, pinned);
			let weight = 1.0 / (1.0 - removed_probability).sqrt();

			for c in counter {
				self.register[c] *= weight;
			}

			// change statement

			match measured {
				0 => self.states[address] = State::ZERO,
				1 => self.states[address] = State::ONE,
				_ => panic!()

			}

			Some(measured)
		}
	}
}

/**
 * To calculate all qubit, we need (2^n)x(2^n) size huge matrix and computation time is
 * O(4^n) mathmetically. However, we need only use fucntion that performs linear transformation
 * for better performance. Computation time of this implement is O(2^n).
 */
impl QVM {
	pub fn pass_gate(&mut self, gate: Gate, addresses: Vec<usize>) -> Option<bool> {
		assert!(is_valid_addresses(self.bits, &addresses));
		assert_eq!(gate.parameter_length(), addresses.len());

		for addr in &addresses {
			//println!("check superposition in {} : {:?}", *addr, self.states[*addr]);
			assert!(self.is_superposition(*addr));
		}

		// generate address decoder

		let mut addressed_bits : Vec<AddressedBit> = Vec::new();
		for addr in &addresses {
			addressed_bits.push(AddressedBit{address: *addr, bit: 0});
		}

		let decoder = AddressDecoder::new(self.bits, addressed_bits);

		// apply gate for all qubits which are in superposition

		for subaddress in decoder {
			let input = self.read_subregister(subaddress, &addresses);
			let gate_function = gate.to_function();
			let output = gate_function(input);
			self.write_subregister(subaddress, &addresses, output);
		}

		Some(true)
	}
}

impl QVM {
	fn read_subregister(&self, subaddress: usize, pinned_addresses: &Vec<usize>) -> Vec<Complex64> {
		let length = pinned_addresses.len();
		let mut ret = vec![Complex64{re:0.0,im:0.0}; 1<<length];

		for i in 0 .. 1 << length {
			let mut index: usize = subaddress;
			for j in 0 .. length {
				if i & (1 << j) != 0 {
					index += 1 << pinned_addresses[j];
				}
			}

			ret[i] = self.register[index];
		}

		ret
	}

	fn write_subregister(&mut self, subaddress: usize, pinned_addresses: &Vec<usize>, input: Vec<Complex64>) -> Option<bool> {
		assert_eq!(1 << pinned_addresses.len(), input.len());

		let length = pinned_addresses.len();

		for i in 0 .. 1 << length {
			let mut index: usize = subaddress;
			for j in 0 .. length {
				if i & (1 << j) != 0 {
					index += 1 << pinned_addresses[j];
				}
			}

			self.register[index] = input[i];
		}

		Some(true)
	}
}

impl QVM {
	pub fn print_register(&self) {
		for i in 0 .. 1 << self.bits {
			println!("{:#05b}> : {:?}", i, self.register[i]);
		}
	}
}