1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
//! # QuEST Rust Wrapper
//!
//! ## Introduction
//!
//! The Quantum Exact Simulation Toolkit is a high performance simulator of
//! universal quantum circuits, state-vectors and density matrices. QuEST is
//! written in C, hybridises OpenMP and MPI, and can run on a GPU. Needing only
//! compilation, QuEST is easy to run both on laptops and supercomputers (in both
//! C and C++), where it can take advantage of multicore, GPU-accelerated and
//! networked machines to quickly simulate circuits on many qubits.
//!
//! This library provides a safe wrapper around QuEST with an idiomatic Rust API.
//!
//! ## Usage
//!
//! To use quest-rs in your Rust codebase, first run:
//! ```bash
//! cargo add quest-rs
//! ```
//! or add `quest-rs` manually to your `Cargo.toml`.
//!
//! The API is simple:
//! ```
//! use quest_rs::{QuestEnv, QuReg};
//!
//! let env = QuestEnv::new();
//! let mut qubits = QuReg::new(2, &env);
//! qubits.init_plus_state().hadamard(0).controlled_not(0, 1);
//! println!(
//!     "Probability amplitude of |11> *before* measurement is: {}",
//!     qubits.probability_amplitude(0b11)
//! );
//! qubits.measure(1);
//! println!(
//!     "Probability amplitude of |11> *after* measurement is: {}",
//!     qubits.probability_amplitude(0b11)
//! );
//! ```
//!
//! The fluent API makes more complicated circuits easy to create:
//! ```
//! use quest_rs::{Complex, ComplexMatrix2, ComplexMatrixN, QReal, QuReg, QuestEnv, Vector};
//!
//! let env = QuestEnv::new();
//!
//! let mut qubits = QuReg::new(3, &env);
//! qubits.init_zero_state();
//!
//! println!("Out environment is:");
//! qubits.report_params();
//! env.report();
//!
//! // Set up the circuitry
//!
//! let unitary_alpha = Complex::new(0.5, 0.5);
//! let unitary_beta = Complex::new(0.5, -0.5);
//!
//! let unitary_matrix = ComplexMatrix2 {
//!     real: [[0.5, 0.5], [0.5, 0.5]],
//!     imag: [[0.5, -0.5], [-0.5, 0.5]],
//! };
//!
//! let mut toffoli_gate = ComplexMatrixN::new(3);
//! for i in 0..6 {
//!     toffoli_gate.set_real(i, i, 1.0);
//! }
//! toffoli_gate.set_real(6, 7, 1.0);
//! toffoli_gate.set_real(7, 6, 1.0);
//!
//! qubits
//!     .hadamard(0)
//!     .controlled_not(0, 1)
//!     .rotate_y(2, 0.1)
//!     .multi_controlled_phase_flip(vec![0, 1, 2])
//!     .unitary(0, unitary_matrix)
//!     .compact_unitary(1, unitary_alpha, unitary_beta)
//!     .rotate_around_axis(2, (3.14 / 2.0) as QReal, Vector::new(1.0, 0.0, 0.0))
//!     .controlled_compact_unitary(0, 1, unitary_alpha, unitary_beta)
//!     .multi_controlled_unitary(vec![0, 1], 2, unitary_matrix)
//!     .multi_qubit_unitary(vec![0, 1, 2], toffoli_gate);
//!
//! // Study the output
//!
//! println!("Circuit output:");
//! println!("---------------");
//! println!("Probability amplitude of |111> is: {}", qubits.probability_amplitude(0b111));
//! println!(
//!     "Probability of qubit 2 being in state 1: {}",
//!     qubits.calculate_probability_of_outcome(2, 1)
//! );
//! println!("Qubit 0 was measured in state: {}", qubits.measure(0));
//! let (outcome, outcome_probability) = qubits.measure_with_stats(2);
//! println!(
//!     "Qubit 2 collapsed to {} with probability {}",
//!     outcome, outcome_probability
//! );
//! ```
//! 
//! ## Template
//! 
//! For a starter template to get going with an executable project that uses this
//! wrapper, see: https://github.com/drewsilcock/quest-rs-template.
//!
//! ## Todo
//!
//! The C QuEST library has several compile-option flags which should be
//! supported using cargo features. These are:
//! - what precision to operate in (single, double or quad)
//! - whether to enable OpenMP, MPI, OpenMP+MPI or GPU
//!
//! The documentation should also be expanded to include all the relevant info
//! from the QuEST documentation.

pub mod environment;
pub mod qubits;

pub use environment::{seed_quest, seed_quest_default, QuestEnv};
pub use qubits::QuReg;

// There's currently an issue with the 128-bit integer FFI due to upstream bugs in LLVM.
// This isn't a problem when we're in single or double precision but there are hundreds
// of warnings generated because of math.h includes. This *is* a problem for quad
// precision, though. Follow these threads for more info:
// - https://github.com/rust-lang/rust/issues/54341
// - https://github.com/rust-lang/unsafe-code-guidelines/issues/119
#[allow(improper_ctypes)]
#[allow(non_upper_case_globals)]
#[allow(non_camel_case_types)]
#[allow(non_snake_case)]
#[allow(dead_code)]
#[allow(clippy::all)]
mod ffi {
    include!(concat!(env!("OUT_DIR"), "/bindings.rs"));
}

// TODO: Figure out how to handle building with different precisions. Is the
// dylib built for a specific precision? If so, how can we handle this? Cargo
// features maybe?
pub type QReal = f64; // QuEST also supports f32 and f128.

// TODO: Figure out same thing but for OpenMP + MPI + GPU.

// TODO: `syncQuESTSuccess(int successCode)` also exists but it looks more like
// an internal function. Not sure whether it should be included in this wrapper.

// TODO: Is it possible to implement the `getStaticComplexMatrixN()` macro using the
// underlying function `bindArraysToStackComplexMatrixN()`?

/// Represents one complex number.
///
/// ## Examples
/// ```
/// use quest_rs::Complex;
///
/// let alpha = Complex::new(0.4, 0.6);
/// assert_eq!(alpha.real, 0.4);
/// assert_eq!(alpha.imag, 0.6);
///
/// let beta = Complex::real(1.2);
/// assert_eq!(beta.real, 1.2);
/// assert_eq!(beta.imag, 0.0);
///
/// let gamma = Complex::imag(23.9);
/// assert_eq!(gamma.real, 0.0);
/// assert_eq!(gamma.imag, 23.9);
///
/// let zero = Complex::zero();
/// assert_eq!(zero.real, 0.0);
/// assert_eq!(zero.imag, 0.0);
/// ```
#[derive(Debug, Copy, Clone)]
pub struct Complex {
    pub real: QReal,
    pub imag: QReal,
}

impl Complex {
    /// Create a new complex number based on the real and imaginary values.
    pub fn new(real: QReal, imag: QReal) -> Self {
        Complex { real, imag }
    }

    pub fn real(real: QReal) -> Self {
        Complex { real, imag: 0.0 }
    }

    pub fn imag(imag: QReal) -> Self {
        Complex { real: 0.0, imag }
    }

    pub fn zero() -> Self {
        Complex {
            real: 0.0,
            imag: 0.0,
        }
    }
}

impl From<Complex> for ffi::Complex {
    fn from(item: Complex) -> Self {
        ffi::Complex {
            real: item.real,
            imag: item.imag,
        }
    }
}

impl From<ffi::Complex> for Complex {
    fn from(item: ffi::Complex) -> Self {
        Complex {
            real: item.real,
            imag: item.imag,
        }
    }
}

/// Represents a 2x2 matrix of complex numbers.
///
/// ## Examples
/// ```
/// use quest_rs::{Complex, ComplexMatrix2};
///
/// let pauli_x = ComplexMatrix2::new([
///     [0.0, 1.0],
///     [1.0, 0.0],
/// ], [
///     [0.0, 0.0],
///     [0.0, 0.0],
/// ]);
/// assert_eq!(pauli_x.real, [
///     [0.0, 1.0],
///     [1.0, 0.0],
/// ]);
/// assert_eq!(pauli_x.imag, [
///     [0.0, 0.0],
///     [0.0, 0.0],
/// ]);
///
/// let phase = ComplexMatrix2::compact([
///     [Complex::real(1.0), Complex::zero()],
///     [Complex::zero(), Complex::imag(1.0)],
/// ]);
/// assert_eq!(phase.real, [
///     [1.0, 0.0],
///     [0.0, 0.0],
/// ]);
/// assert_eq!(phase.imag, [
///     [0.0, 0.0],
///     [0.0, 1.0],
/// ]);
///
/// let pauli_z = ComplexMatrix2::real([
///     [1.0, 0.0],
///     [0.0, -1.0],
/// ]);
/// assert_eq!(pauli_z.real, [
///     [1.0, 0.0],
///     [0.0, -1.0],
/// ]);
/// assert_eq!(pauli_z.imag, [
///     [0.0, 0.0],
///     [0.0, 0.0],
/// ]);
///
/// let pauli_y = ComplexMatrix2::imag([
///     [0.0, -1.0],
///     [1.0, 0.0],
/// ]);
/// assert_eq!(pauli_y.real, [
///     [0.0, 0.0],
///     [0.0, 0.0],
/// ]);
/// assert_eq!(pauli_y.imag, [
///     [0.0, -1.0],
///     [1.0, 0.0],
/// ]);
/// ```
#[derive(Debug, Copy, Clone)]
pub struct ComplexMatrix2 {
    pub real: [[f64; 2usize]; 2usize],
    pub imag: [[f64; 2usize]; 2usize],
}

impl ComplexMatrix2 {
    pub fn new(real: [[QReal; 2]; 2], imag: [[QReal; 2]; 2]) -> Self {
        ComplexMatrix2 { real, imag }
    }

    pub fn compact(values: [[Complex; 2]; 2]) -> Self {
        let mut real = [[0.0; 2]; 2];
        let mut imag = [[0.0; 2]; 2];

        for (i, row) in values.iter().enumerate() {
            for (j, value) in row.iter().enumerate() {
                real[i][j] = value.real;
                imag[i][j] = value.imag;
            }
        }

        ComplexMatrix2 { real, imag }
    }

    pub fn real(real: [[QReal; 2]; 2]) -> Self {
        ComplexMatrix2 {
            real,
            imag: [[0.0, 0.0], [0.0, 0.0]],
        }
    }

    pub fn imag(imag: [[QReal; 2]; 2]) -> Self {
        ComplexMatrix2 {
            real: [[0.0, 0.0], [0.0, 0.0]],
            imag,
        }
    }
}

impl From<ComplexMatrix2> for ffi::ComplexMatrix2 {
    fn from(item: ComplexMatrix2) -> Self {
        ffi::ComplexMatrix2 {
            real: item.real,
            imag: item.imag,
        }
    }
}

/// Represents a 4x4 matrix of complex numbers.
///
/// ## Examples
/// ```
/// use quest_rs::{Complex, ComplexMatrix4};
///
/// let sqrt_swap = ComplexMatrix4::new([
///     [1.0, 0.0, 0.0, 0.0],
///     [0.0, 0.5, 0.5, 0.0],
///     [0.0, 0.5, 0.5, 0.0],
///     [0.0, 0.0, 0.0, 1.0],
/// ], [
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.5, -0.5, 0.0],
///     [0.0, -0.5, 0.5, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
/// ]);
/// assert_eq!(sqrt_swap.real, [
///     [1.0, 0.0, 0.0, 0.0],
///     [0.0, 0.5, 0.5, 0.0],
///     [0.0, 0.5, 0.5, 0.0],
///     [0.0, 0.0, 0.0, 1.0],
/// ]);
/// assert_eq!(sqrt_swap.imag, [
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.5, -0.5, 0.0],
///     [0.0, -0.5, 0.5, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
/// ]);
///
/// let sqrt_swap_compact = ComplexMatrix4::compact([
///     [Complex::real(1.0), Complex::zero(), Complex::zero(), Complex::zero()],
///     [Complex::zero(), Complex::new(0.5, 0.5), Complex::new(0.5, -0.5), Complex::zero()],
///     [Complex::zero(), Complex::new(0.5, -0.5), Complex::new(0.5, 0.5), Complex::zero()],
///     [Complex::zero(), Complex::zero(), Complex::zero(), Complex::real(1.0)],
/// ]);
/// assert_eq!(sqrt_swap.real, sqrt_swap_compact.real);
/// assert_eq!(sqrt_swap.imag, sqrt_swap_compact.imag);
///
/// let controlled_z = ComplexMatrix4::real([
///     [1.0, 0.0, 0.0, 0.0],
///     [0.0, 1.0, 0.0, 0.0],
///     [0.0, 0.0, 1.0, 0.0],
///     [0.0, 0.0, 0.0, -1.0],
/// ]);
/// assert_eq!(controlled_z.real, [
///     [1.0, 0.0, 0.0, 0.0],
///     [0.0, 1.0, 0.0, 0.0],
///     [0.0, 0.0, 1.0, 0.0],
///     [0.0, 0.0, 0.0, -1.0],
/// ]);
/// assert_eq!(controlled_z.imag, [
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
/// ]);
///
/// let imaginary_cnot = ComplexMatrix4::imag([
///     [1.0, 0.0, 0.0, 0.0],
///     [0.0, 1.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 1.0],
///     [0.0, 0.0, 1.0, 0.0],
/// ]);
/// assert_eq!(imaginary_cnot.real, [
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 0.0],
/// ]);
/// assert_eq!(imaginary_cnot.imag, [
///     [1.0, 0.0, 0.0, 0.0],
///     [0.0, 1.0, 0.0, 0.0],
///     [0.0, 0.0, 0.0, 1.0],
///     [0.0, 0.0, 1.0, 0.0],
/// ]);
/// ```
#[derive(Debug, Copy, Clone)]
pub struct ComplexMatrix4 {
    pub real: [[f64; 4usize]; 4usize],
    pub imag: [[f64; 4usize]; 4usize],
}

impl ComplexMatrix4 {
    pub fn new(real: [[QReal; 4]; 4], imag: [[QReal; 4]; 4]) -> Self {
        ComplexMatrix4 { real, imag }
    }

    pub fn compact(values: [[Complex; 4]; 4]) -> Self {
        let mut real = [[0.0; 4]; 4];
        let mut imag = [[0.0; 4]; 4];

        for (i, row) in values.iter().enumerate() {
            for (j, value) in row.iter().enumerate() {
                real[i][j] = value.real;
                imag[i][j] = value.imag;
            }
        }

        ComplexMatrix4 { real, imag }
    }

    pub fn real(real: [[QReal; 4]; 4]) -> Self {
        ComplexMatrix4 {
            real,
            imag: [[0.0; 4]; 4],
        }
    }

    pub fn imag(imag: [[QReal; 4]; 4]) -> Self {
        ComplexMatrix4 {
            real: [[0.0; 4]; 4],
            imag,
        }
    }
}

impl From<ComplexMatrix4> for ffi::ComplexMatrix4 {
    fn from(item: ComplexMatrix4) -> Self {
        ffi::ComplexMatrix4 {
            real: item.real,
            imag: item.imag,
        }
    }
}

#[derive(Debug, Copy, Clone)]
pub struct Vector {
    pub x: QReal,
    pub y: QReal,
    pub z: QReal,
}

impl Vector {
    pub fn new(x: QReal, y: QReal, z: QReal) -> Self {
        Vector { x, y, z }
    }
}

impl From<Vector> for ffi::Vector {
    fn from(item: Vector) -> Self {
        ffi::Vector {
            x: item.x,
            y: item.y,
            z: item.z,
        }
    }
}

#[derive(Debug)]
pub struct ComplexMatrixN {
    matrix: ffi::ComplexMatrixN,
    num_rows: usize,
}

// Once const generic have stabilised, we can use them here.
impl ComplexMatrixN {
    pub fn new(num_qubits: i32) -> Self {
        unsafe {
            ComplexMatrixN {
                matrix: ffi::createComplexMatrixN(num_qubits),
                num_rows: 1 << num_qubits,
            }
        }
    }

    pub fn init(&mut self, real: Vec<Vec<QReal>>, imag: Vec<Vec<QReal>>) -> &mut Self {
        let real_ptr = real
            .iter()
            .map(|row| row.as_ptr() as *mut QReal)
            .collect::<Vec<*mut QReal>>()
            .as_ptr();
        let imag_ptr = imag
            .iter()
            .map(|row| row.as_ptr() as *mut QReal)
            .collect::<Vec<*mut QReal>>()
            .as_ptr();
        unsafe {
            ffi::initComplexMatrixN(
                self.matrix,
                real_ptr as *mut *mut QReal,
                imag_ptr as *mut *mut QReal,
            );
        }
        self
    }

    pub fn display(&self) -> String {
        let mut out = String::new();
        for i in 0..self.num_rows {
            out.push_str("[");
            for j in 0..self.num_rows {
                let value = self.get(i, j);
                out.push_str(&format!("({:.5} + {:.5}j)", value.real, value.imag));
                if j != self.num_rows - 1 {
                    out.push_str("\t");
                }
            }
            out.push_str("]\n");
        }
        out
    }

    pub fn set_real(&mut self, i: usize, j: usize, value: QReal) -> &mut Self {
        self.set_value(self.matrix.real, i, j, value);
        self
    }

    pub fn set_imag(&mut self, i: usize, j: usize, value: QReal) -> &mut Self {
        self.set_value(self.matrix.imag, i, j, value);
        self
    }

    pub fn get(&self, i: usize, j: usize) -> Complex {
        Complex::new(
            self.get_value(self.matrix.real, i, j),
            self.get_value(self.matrix.imag, i, j),
        )
    }

    fn get_value(&self, raw_matrix: *mut *mut QReal, i: usize, j: usize) -> QReal {
        if i >= self.num_rows || j >= self.num_rows {
            panic!("Attempting to get value outside of bounds of complex matrix");
        }

        unsafe {
            let value_ptr = self.get_data_ptr(raw_matrix, i, j);
            *value_ptr
        }
    }

    fn set_value(&self, raw_matrix: *mut *mut QReal, i: usize, j: usize, value: QReal) {
        if i >= self.num_rows || j >= self.num_rows {
            panic!("Attempting to set value outside of bounds of complex matrix");
        }

        unsafe {
            let value_ptr = self.get_data_ptr(raw_matrix, i, j);
            *value_ptr = value;
        }
    }

    fn get_data_ptr(&self, raw_matrix: *mut *mut QReal, i: usize, j: usize) -> *mut QReal {
        unsafe {
            let row = *raw_matrix.add(i);
            row.add(j)
        }
    }
}

impl Drop for ComplexMatrixN {
    fn drop(&mut self) {
        unsafe {
            ffi::destroyComplexMatrixN(self.matrix);
        }
    }
}

impl From<ComplexMatrixN> for ffi::ComplexMatrixN {
    fn from(item: ComplexMatrixN) -> Self {
        item.matrix
    }
}

#[derive(Debug, Copy, Clone)]
pub enum PauliOpType {
    PauliI,
    PauliX,
    PauliY,
    PauliZ,
}

impl From<PauliOpType> for ffi::pauliOpType {
    fn from(item: PauliOpType) -> Self {
        match item {
            PauliOpType::PauliI => ffi::pauliOpType_PAULI_I,
            PauliOpType::PauliX => ffi::pauliOpType_PAULI_X,
            PauliOpType::PauliY => ffi::pauliOpType_PAULI_Y,
            PauliOpType::PauliZ => ffi::pauliOpType_PAULI_Z,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{Complex, ComplexMatrix2, ComplexMatrixN, QReal, QuReg, QuestEnv, Vector};

    #[test]
    fn two_qubit_circuit() {
        let env = QuestEnv::new();

        let mut qubits = QuReg::new(2, &env);
        qubits.init_plus_state().hadamard(0).controlled_not(0, 1);

        let prob_amp_before = qubits.probability_amplitude(0b11);
        println!(
            "Probability amplitude of |11> *before* measurement is: {}",
            prob_amp_before
        );

        qubits.measure(1);
        let prob_amp_after = qubits.probability_amplitude(0b11);
        println!(
            "Probability amplitude of |11> *after* measurement is: {}",
            prob_amp_after
        );
    }

    #[test]
    fn three_cubit_circuit() {
        let env = QuestEnv::new();
        let mut qubits = QuReg::new(3, &env);

        qubits.init_zero_state();

        println!("Out environment is:");
        qubits.report_params();
        env.report();

        // Set up the circuitry

        let unitary_alpha = Complex::new(0.5, 0.5);
        let unitary_beta = Complex::new(0.5, -0.5);

        let unitary_matrix = ComplexMatrix2 {
            real: [[0.5, 0.5], [0.5, 0.5]],
            imag: [[0.5, -0.5], [-0.5, 0.5]],
        };

        let mut toffoli_gate = ComplexMatrixN::new(3);
        for i in 0..6 {
            toffoli_gate.set_real(i, i, 1.0);
        }
        toffoli_gate.set_real(6, 7, 1.0);
        toffoli_gate.set_real(7, 6, 1.0);

        qubits
            .hadamard(0)
            .controlled_not(0, 1)
            .rotate_y(2, 0.1)
            .multi_controlled_phase_flip(vec![0, 1, 2])
            .unitary(0, unitary_matrix)
            .compact_unitary(1, unitary_alpha, unitary_beta)
            .rotate_around_axis(2, (3.14 / 2.0) as QReal, Vector::new(1.0, 0.0, 0.0))
            .controlled_compact_unitary(0, 1, unitary_alpha, unitary_beta)
            .multi_controlled_unitary(vec![0, 1], 2, unitary_matrix)
            .multi_qubit_unitary(vec![0, 1, 2], toffoli_gate);

        // Study the output
        println!("Circuit output:");
        println!("---------------");

        // Also compare against values taken manually from directly running
        // equivalent C code.

        let prob_amp_state_111 = qubits.probability_amplitude(0b111);
        println!("Probability amplitude of |111> is: {}", prob_amp_state_111);
        // TODO: Assert that this probability amplitude == value from running native library code.

        let prob_qubit_two_in_state_1 = qubits.calculate_probability_of_outcome(2, 1);
        println!(
            "Probability of qubit 2 being in state 1: {}",
            prob_qubit_two_in_state_1
        );
        // TODO: Assert that this outcome probability == value from running native library code.

        println!("Qubit 0 was measured in state: {}", qubits.measure(0));
        let (outcome, outcome_probability) = qubits.measure_with_stats(2);
        println!(
            "Qubit 2 collapsed to {} with probability {}",
            outcome, outcome_probability
        );
    }
}