1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
//! Decode a QR code from a BitGrid.
//!
//! This is not meant to decode QR codes from camera images, but a QR code encoded in bmp generated
//! from this crate could be decoded back to the content
//!
//! Imported from https://github.com/WanzenBug/rqrr

use g2p::GaloisField;
use gf16::GF16;
use gf256::GF256;
use std::io::{Cursor, Write};
use std::mem;
use version_db::{RSParameters, VERSION_DATA_BASE};

pub mod g2p;
pub mod g2poly;
pub mod gf16;
mod gf256;
mod version_db;

const MAX_PAYLOAD_SIZE: usize = 8896;

/// A grid that contains exactly one QR code square.
///
/// The common trait for everything that can be decoded as a QR code. Given a normal image, we first
/// need to find the QR grids in it.
///
/// This trait can be implemented when some object is known to be exactly the bit-pattern
/// of a QR code.
pub trait BitGrid {
    /// Return the size of the grid.
    ///
    /// Since QR codes are always squares, the grid is assumed to be size * size.
    fn size(&self) -> usize;

    /// Return the value of the bit at the given location.
    ///
    /// `true` means 'black', `false` means 'white'
    fn bit(&self, y: usize, x: usize) -> bool;
}

impl BitGrid for &bmp_monochrome::Bmp {
    fn size(&self) -> usize {
        self.width()
    }

    fn bit(&self, y: usize, x: usize) -> bool {
        self.get(y, x)
    }
}

/// Allows to decode the QR coded in a bmp file
pub trait BmpDecode {
    /// Allows to decode the QR coded in a bmp file
    fn decode(&self) -> String;
}

impl BmpDecode for bmp_monochrome::Bmp {
    fn decode(&self) -> String {
        let meta = read_format(&self).unwrap();
        let raw = read_data(&self, &meta);
        let stream = codestream_ecc(&meta, raw).unwrap();
        let mut writer = Cursor::new(vec![]);
        decode_payload(&meta, stream, &mut writer).unwrap();
        let out = String::from_utf8(writer.into_inner()).unwrap();
        out
    }
}

#[derive(Clone)]
/// RawData
pub struct RawData {
    data: [u8; MAX_PAYLOAD_SIZE],
    len: usize,
}

impl RawData {
    /// new
    pub fn new() -> Self {
        RawData {
            data: [0; MAX_PAYLOAD_SIZE],
            len: 0,
        }
    }

    /// push
    pub fn push(&mut self, bit: bool) {
        assert!((self.len >> 8) < MAX_PAYLOAD_SIZE);
        let bitpos = (self.len & 7) as u8;
        let bytepos = self.len >> 3;

        if bit {
            self.data[bytepos] |= 0x80_u8 >> bitpos;
        }
        self.len += 1;
    }
}

#[derive(Clone)]
/// CorrectedDataStream
pub struct CorrectedDataStream {
    data: [u8; MAX_PAYLOAD_SIZE],
    ptr: usize,
    bit_len: usize,
}

impl CorrectedDataStream {
    /// bits_remaining
    pub fn bits_remaining(&self) -> usize {
        assert!(self.bit_len >= self.ptr);
        self.bit_len - self.ptr
    }

    /// take_bits
    pub fn take_bits(&mut self, nbits: usize) -> usize {
        let mut ret = 0;
        let max_len = ::std::cmp::min(self.bits_remaining(), nbits);
        assert!(max_len <= mem::size_of::<usize>() * 8);
        for _ in 0..max_len {
            let b = self.data[self.ptr >> 3];
            let bitpos = self.ptr & 7;
            ret <<= 1;
            if 0 != (b << bitpos) & 0x80 {
                ret |= 1
            }
            self.ptr += 1;
        }
        ret
    }
}

fn read_data(code: &dyn BitGrid, meta: &MetaData) -> RawData {
    let mut ds = RawData::new();

    let mut y = code.size() - 1;
    let mut x = code.size() - 1;
    let mut neg_dir = true;

    while x > 0 {
        if x == 6 {
            x -= 1;
        }
        if !reserved_cell(meta.version, y, x) {
            ds.push(read_bit(code, meta, y, x));
        }
        if !reserved_cell(meta.version, y, x - 1) {
            ds.push(read_bit(code, meta, y, x - 1));
        }

        let (new_y, new_neg_dir) = match (y, neg_dir) {
            (0, true) => {
                x = x.saturating_sub(2);
                (0, false)
            }
            (y, false) if y == code.size() - 1 => {
                x = x.saturating_sub(2);
                (code.size() - 1, true)
            }
            (y, true) => (y - 1, true),
            (y, false) => (y + 1, false),
        };

        y = new_y;
        neg_dir = new_neg_dir;
    }

    ds
}

fn read_bit(code: &dyn BitGrid, meta: &MetaData, y: usize, x: usize) -> bool {
    let mut v = code.bit(y, x) as u8;
    if mask_bit(meta.mask, y, x) {
        v ^= 1
    }
    v != 0
}

fn mask_bit(mask: u16, y: usize, x: usize) -> bool {
    match mask {
        0 => 0 == (y + x) % 2,
        1 => 0 == y % 2,
        2 => 0 == x % 3,
        3 => 0 == (y + x) % 3,
        4 => 0 == ((y / 2) + (x / 3)) % 2,
        5 => 0 == ((y * x) % 2 + (y * x) % 3),
        6 => 0 == ((y * x) % 2 + (y * x) % 3) % 2,
        7 => 0 == ((y * x) % 3 + (y + x) % 2) % 2,
        _ => panic!("Unknown mask value"),
    }
}

fn reserved_cell(version: Version, i: usize, j: usize) -> bool {
    let ver = &VERSION_DATA_BASE[version.0];
    let size = version.0 * 4 + 17;

    /* Finder + format: top left */
    if i < 9 && j < 9 {
        return true;
    }

    /* Finder + format: bottom left */
    if i + 8 >= size && j < 9 {
        return true;
    }

    /* Finder + format: top right */
    if i < 9 && j + 8 >= size {
        return true;
    }

    /* Exclude timing patterns */
    if i == 6 || j == 6 {
        return true;
    }

    /* Exclude version info, if it exists. Version info sits adjacent to
     * the top-right and bottom-left finders in three rows, bounded by
     * the timing pattern.
     */
    if version.0 >= 7 {
        if i < 6 && j + 11 >= size {
            return true;
        } else if i + 11 >= size && j < 6 {
            return true;
        }
    }

    /* Exclude alignment patterns */
    let mut ai = None;
    let mut aj = None;

    fn abs_diff(x: usize, y: usize) -> usize {
        if x < y {
            y - x
        } else {
            x - y
        }
    }

    let mut len = 0;
    for (a, &pattern) in ver.apat.iter().take_while(|&&x| x != 0).enumerate() {
        len = a;
        if abs_diff(pattern, i) < 3 {
            ai = Some(a)
        }
        if abs_diff(pattern, j) < 3 {
            aj = Some(a)
        }
    }

    match (ai, aj) {
        (Some(x), Some(y)) if x == len && y == len => true,
        (Some(x), Some(_)) if 0 < x && x < len => true,
        (Some(_), Some(x)) if 0 < x && x < len => true,
        _ => false,
    }
}

fn read_format(code: &dyn BitGrid) -> Result<MetaData, ()> {
    let mut format = 0;

    // Try first location
    const XS: [usize; 15] = [8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 4, 3, 2, 1, 0];
    const YS: [usize; 15] = [0, 1, 2, 3, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8];
    for i in (0..15).rev() {
        format = (format << 1) | code.bit(YS[i], XS[i]) as u16;
    }
    format ^= 0x5412;

    // Check format, try other location if needed
    let verified_format = correct_format(format).or_else(|_| {
        let mut format = 0;
        for i in 0..7 {
            format = (format << 1) | code.bit(code.size() - 1 - i, 8) as u16;
        }
        for i in 0..8 {
            format = (format << 1) | code.bit(8, code.size() - 8 + i) as u16;
        }
        format ^= 0x5412;
        correct_format(format)
    })?;

    let fdata = verified_format >> 10;
    let ecc_level = fdata >> 3;
    let mask = fdata & 7;
    let version = Version::from_size(code.size())?;

    Ok(MetaData {
        version,
        ecc_level,
        mask,
    })
}

fn correct_format(mut word: u16) -> Result<u16, ()> {
    /* Evaluate U (received codeword) at each of alpha_1 .. alpha_6
     * to get S_1 .. S_6 (but we index them from 0).
     */
    if let Err(mut s) = format_syndromes(word) {
        let sigma = berlekamp_massey(&mut s, 6);

        /* Now, find the roots of the polynomial */
        for i in 0..15 {
            if poly_eval(&sigma, GF16::GENERATOR.pow(15 - i)) == GF16::ZERO {
                word ^= 1 << i;
            }
        }

        // Double CHECK syndromes
        format_syndromes(word).map_err(|_| ())?;
    }
    Ok(word)
}

fn poly_eval<G>(s: &[G; 64], x: G) -> G
where
    G: GaloisField,
{
    let mut sum = G::ZERO;
    let mut x_pow = G::ONE;

    for i in 0..64 {
        sum += s[i] * x_pow;
        x_pow *= x;
    }
    sum
}

/* ***********************************************************************
 * Berlekamp-Massey algorithm for finding error locator polynomials.
 */
fn berlekamp_massey<G>(s: &[G; 64], n: usize) -> [G; 64]
where
    G: GaloisField,
{
    let mut ts: [G; 64] = [G::ZERO; 64];
    let mut cs: [G; 64] = [G::ZERO; 64];
    let mut bs: [G; 64] = [G::ZERO; 64];
    let mut l: usize = 0;
    let mut m: usize = 1;
    let mut b = G::ONE;
    bs[0] = G::ONE;
    cs[0] = G::ONE;

    for n in 0..n {
        let mut d = s[n];

        // Calculate in GF(p):
        // d = s[n] + \Sum_{i=1}^{l} c[i] * s[n - i]
        for i in 1..=l {
            d += cs[i] * s[n - i];
        }
        // Pre-calculate d * b^-1 in GF(p)
        let mult = d / b;

        if d == G::ZERO {
            m += 1
        } else if l * 2 <= n {
            ts.copy_from_slice(&cs);
            poly_add(&mut cs, &bs, mult, m);
            bs.copy_from_slice(&ts);
            l = n + 1 - l;
            b = d;
            m = 1
        } else {
            poly_add(&mut cs, &bs, mult, m);
            m += 1
        }
    }
    cs
}

/* ***********************************************************************
 * Format value error correction
 *
 * Generator polynomial for GF(2^4) is x^4 + x + 1
 */
fn format_syndromes(u: u16) -> Result<[GF16; 64], [GF16; 64]> {
    let mut result = [GF16(0); 64];
    let mut nonzero = false;

    for i in 0..6 {
        for j in 0..15 {
            if u & (1 << j) != 0 {
                result[i] += GF16::GENERATOR.pow((i + 1) * j);
            }
        }
        if result[i].0 != 0 {
            nonzero = true;
        }
    }

    if nonzero {
        Err(result)
    } else {
        Ok(result)
    }
}

/* ***********************************************************************
 * Polynomial operations
 */
fn poly_add<G>(dst: &mut [G; 64], src: &[G; 64], c: G, shift: usize) -> ()
where
    G: GaloisField,
{
    if c == G::ZERO {
        return;
    }

    for i in 0..64 {
        let p = i + shift;
        if p >= 64 {
            break;
        }
        let v = src[i];
        dst[p] += v * c;
    }
}

fn codestream_ecc(meta: &MetaData, ds: RawData) -> Result<CorrectedDataStream, ()> {
    let mut out = CorrectedDataStream {
        data: [0; MAX_PAYLOAD_SIZE],
        ptr: 0,
        bit_len: 0,
    };

    let ver = &VERSION_DATA_BASE[meta.version.0 as usize];
    let sb_ecc = &ver.ecc[meta.ecc_level as usize];
    let lb_ecc = RSParameters {
        bs: sb_ecc.bs + 1,
        dw: sb_ecc.dw + 1,
        ns: sb_ecc.ns,
    };

    let lb_count = (ver.data_bytes - sb_ecc.bs * sb_ecc.ns) / (sb_ecc.bs + 1);
    let bc = lb_count + sb_ecc.ns;
    let ecc_offset = sb_ecc.dw * bc + lb_count;

    let mut dst_offset = 0;
    for i in 0..bc {
        let ecc = if i < sb_ecc.ns { sb_ecc } else { &lb_ecc };
        let dst = &mut out.data[dst_offset..(dst_offset + ecc.bs)];
        let num_ec = ecc.bs - ecc.dw;
        for j in 0..ecc.dw {
            dst[j] = ds.data[j * bc + i];
        }
        for j in 0..num_ec {
            dst[ecc.dw + j] = ds.data[ecc_offset + j * bc + i];
        }
        correct_block(dst, ecc)?;

        dst_offset += ecc.dw;
    }

    out.bit_len = dst_offset * 8;
    Ok(out)
}

fn correct_block(block: &mut [u8], ecc: &RSParameters) -> Result<(), ()> {
    assert!(ecc.bs > ecc.dw);

    let npar = ecc.bs - ecc.dw;
    let mut sigma_deriv = [GF256::ZERO; 64];

    // Calculate syndromes. If all 0 there is nothing to do.
    let s = match block_syndromes(&block[..ecc.bs], npar) {
        Ok(_) => return Ok(()),
        Err(s) => s,
    };

    let sigma = berlekamp_massey(&s, npar);
    /* Compute derivative of sigma */
    for i in (1..64).step_by(2) {
        sigma_deriv[i - 1] = sigma[i];
    }

    /* Compute error evaluator polynomial */
    let omega = eloc_poly(&s, &sigma, npar - 1);

    /* Find error locations and magnitudes */
    for i in 0..ecc.bs {
        let xinv = GF256::GENERATOR.pow(255 - i);
        if poly_eval(&sigma, xinv) == GF256::ZERO {
            let sd_x = poly_eval(&sigma_deriv, xinv);
            let omega_x = poly_eval(&omega, xinv);
            let error = omega_x / sd_x;
            block[ecc.bs - i - 1] = (GF256(block[ecc.bs - i - 1]) + error).0;
        }
    }

    match block_syndromes(&block[..ecc.bs], npar) {
        Ok(_) => Ok(()),
        Err(_) => Err(()),
    }
}

fn eloc_poly(s: &[GF256; 64], sigma: &[GF256; 64], npar: usize) -> [GF256; 64] {
    let mut omega = [GF256::ZERO; 64];
    for i in 0..npar {
        let a = sigma[i];
        for j in 0..(npar - i) {
            let b = s[j + 1];
            omega[i + j] += a * b;
        }
    }
    omega
}

/* ***********************************************************************
 * Code stream error correction
 *
 * Generator polynomial for GF(2^8) is x^8 + x^4 + x^3 + x^2 + 1
 */
fn block_syndromes(block: &[u8], npar: usize) -> Result<[GF256; 64], [GF256; 64]> {
    let mut nonzero: bool = false;
    let mut s = [GF256::ZERO; 64];

    for i in 0..npar {
        for j in 0..block.len() {
            let c = GF256(block[block.len() - 1 - j]);
            s[i] += c * GF256::GENERATOR.pow(i * j);
        }
        if s[i] != GF256::ZERO {
            nonzero = true;
        }
    }
    if nonzero {
        Err(s)
    } else {
        Ok(s)
    }
}

fn decode_payload<W>(meta: &MetaData, mut ds: CorrectedDataStream, mut writer: W) -> Result<(), ()>
where
    W: Write,
{
    while ds.bits_remaining() >= 4 {
        let ty = ds.take_bits(4);
        match ty {
            0 => break,
            1 => decode_numeric(meta, &mut ds, &mut writer),
            2 => decode_alpha(meta, &mut ds, &mut writer),
            4 => decode_byte(meta, &mut ds, &mut writer),
            8 => decode_kanji(meta, &mut ds, &mut writer),
            7 => decode_eci(meta, &mut ds, &mut writer),
            _ => Err(())?,
        }?;
    }
    Ok(())
}

fn decode_eci<W>(_meta: &MetaData, ds: &mut CorrectedDataStream, mut _writer: W) -> Result<(), ()>
where
    W: Write,
{
    if ds.bits_remaining() < 8 {
        Err(())?
    }

    let mut _eci = ds.take_bits(8) as u32;
    if _eci & 0xc0 == 0x80 {
        if ds.bits_remaining() < 8 {
            Err(())?
        }
        _eci = (_eci << 8) | (ds.take_bits(8) as u32)
    } else if _eci & 0xe0 == 0xc0 {
        if ds.bits_remaining() < 16 {
            Err(())?
        }

        _eci = (_eci << 16) | (ds.take_bits(16) as u32)
    }
    Ok(())
}

fn decode_kanji<W>(meta: &MetaData, ds: &mut CorrectedDataStream, mut writer: W) -> Result<(), ()>
where
    W: Write,
{
    let nbits = match meta.version {
        Version(0..=9) => 8,
        Version(10..=26) => 10,
        _ => 12,
    };

    let count = ds.take_bits(nbits);
    if ds.bits_remaining() < count * 13 {
        Err(())?
    }

    for _ in 0..count {
        let d = ds.take_bits(13);
        let ms_b = d / 0xc0;
        let ls_b = d % 0xc0;
        let intermediate = ms_b << 8 | ls_b;
        let sjw = if intermediate + 0x8140 <= 0x9ffc {
            /* bytes are in the range 0x8140 to 0x9FFC */
            (intermediate + 0x8140) as u16
        } else {
            (intermediate + 0xc140) as u16
        };
        writer
            .write_all(&[(sjw >> 8) as u8, (sjw & 0xff) as u8])
            .map_err(|_| ())?;
    }
    Ok(())
}

fn decode_byte<W>(meta: &MetaData, ds: &mut CorrectedDataStream, mut writer: W) -> Result<(), ()>
where
    W: Write,
{
    let nbits = match meta.version {
        Version(0..=9) => 8,
        _ => 16,
    };

    let count = ds.take_bits(nbits);
    if ds.bits_remaining() < count * 8 {
        return Err(())?;
    }

    for _ in 0..count {
        let buf = &[ds.take_bits(8) as u8];
        writer.write_all(buf).map_err(|_| ())?;
    }
    Ok(())
}

fn decode_alpha<W>(meta: &MetaData, ds: &mut CorrectedDataStream, mut writer: W) -> Result<(), ()>
where
    W: Write,
{
    let nbits = match meta.version {
        Version(0..=9) => 9,
        Version(10..=26) => 11,
        _ => 13,
    };
    let mut count = ds.take_bits(nbits);
    let mut buf = [0; 2];

    while count >= 2 {
        alpha_tuple(&mut buf, ds, 11, 2)?;
        writer.write_all(&buf[..]).map_err(|_| ())?;
        count -= 2;
    }

    if count == 1 {
        alpha_tuple(&mut buf, ds, 6, 1)?;
        writer.write_all(&buf[..1]).map_err(|_| ())?;
    }

    Ok(())
}

fn alpha_tuple(
    buf: &mut [u8; 2],
    ds: &mut CorrectedDataStream,
    nbits: usize,
    digits: usize,
) -> Result<(), ()> {
    if ds.bits_remaining() < nbits {
        Err(())
    } else {
        let mut tuple = ds.take_bits(nbits);
        for i in (0..digits).rev() {
            const ALPHA_MAP: &[u8; 46] = b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:\x00";
            buf[i] = ALPHA_MAP[tuple % 45];
            tuple /= 45;
        }
        Ok(())
    }
}

fn decode_numeric<W>(meta: &MetaData, ds: &mut CorrectedDataStream, mut writer: W) -> Result<(), ()>
where
    W: Write,
{
    let nbits = match meta.version {
        Version(0..=9) => 10,
        Version(10..=26) => 12,
        _ => 14,
    };

    let mut count = ds.take_bits(nbits);
    let mut buf = [0; 3];
    while count >= 3 {
        numeric_tuple(&mut buf, ds, 10, 3)?;
        writer.write_all(&buf[..]).map_err(|_| ())?;
        count -= 3;
    }

    if count == 2 {
        numeric_tuple(&mut buf, ds, 7, 2)?;
        writer.write_all(&buf[..2]).map_err(|_| ())?;
        count -= 2;
    }
    if count == 1 {
        numeric_tuple(&mut buf, ds, 4, 1)?;
        writer.write_all(&buf[..1]).map_err(|_| ())?;
    }

    Ok(())
}

fn numeric_tuple(
    buf: &mut [u8; 3],
    ds: &mut CorrectedDataStream,
    nbits: usize,
    digits: usize,
) -> Result<(), ()> {
    if ds.bits_remaining() < nbits {
        Err(())
    } else {
        let mut tuple = ds.take_bits(nbits);
        for i in (0..digits).rev() {
            buf[i] = (tuple % 10) as u8 + b'0';
            tuple /= 10;
        }
        Ok(())
    }
}

/// Version of a QR Code which determines its size
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub struct Version(pub usize);

impl Version {
    /// Given the grid size, determine the likely grid size
    pub fn from_size(b: usize) -> Result<Self, ()> {
        let computed_version = b.saturating_sub(17) / 4;

        if computed_version > 0 && computed_version <= 40 {
            Ok(Version(computed_version))
        } else {
            Err(())
        }
    }

    /// Return the size of a grid of the given version
    pub fn _to_size(&self) -> usize {
        self.0 as usize * 4 + 17
    }
}

/// MetaData for a QR grid
///
/// Stores information about the size/version of given grid. Also contains information about the
/// error correction level and bit mask used.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub struct MetaData {
    /// The version/size of the grid
    pub version: Version,
    /// the error correction leven, between 0 and 3
    pub ecc_level: u16,
    /// The mask that was used, value between 0 and 7
    pub mask: u16,
}

#[cfg(test)]
mod tests {
    use crate::decode::{
        codestream_ecc, decode_payload, read_data, read_format, BitGrid, MetaData, Version,
    };
    use bmp_monochrome::Bmp;
    use std::fs::File;
    use std::io::Cursor;

    #[test]
    fn test_decode() {
        let bmp = &Bmp::read(File::open("test.bmp").unwrap()).unwrap();
        let meta = read_format(&bmp).unwrap();
        let expected = MetaData {
            version: Version(1),
            ecc_level: 0,
            mask: 2,
        };
        assert_eq!(&expected, &meta);

        let raw = read_data(&bmp, &meta);
        let stream = codestream_ecc(&meta, raw).unwrap();
        let mut writer = Cursor::new(vec![]);
        decode_payload(&meta, stream, &mut writer).unwrap();
        let out = String::from_utf8(writer.into_inner()).unwrap();
        assert_eq!("Hello", &out);
    }

    #[test]
    fn test_grid() {
        let expected = r#"
#######..####.#######
#.....#.....#.#.....#
#.###.#.#.#.#.#.###.#
#.###.#.#.#...#.###.#
#.###.#.##..#.#.###.#
#.....#.##.#..#.....#
#######.#.#.#.#######
........#.#..........
#.#####..#.#..#####..
...#....#..####..##.#
..#####..##.#.##.###.
..#..#.##.#####..##..
.###..#####.#..#....#
........#...#..#.#...
#######..#.#.#..#.##.
#.....#.#.#....#####.
#.###.#.#..#.#..#..#.
#.###.#.##.#####.#...
#.###.#.##..#.##..#..
#.....#..#.####.###..
#######.##..#...#..#.
"#;
        let mut chars = expected.chars();
        let bmp = &Bmp::read(File::open("test.bmp").unwrap()).unwrap();
        for i in 0..bmp.size() {
            for j in 0..bmp.size() {
                let mut char = chars.next().unwrap();
                if char == '\n' {
                    char = chars.next().unwrap();
                }
                assert_eq!(char == '#', bmp.bit(i, j));
            }
        }
    }
}