#[repr(transparent)]
pub struct PyByteArray(_);
Expand description

Represents a Python bytearray.

Implementations

Creates a new Python bytearray object.

The byte string is initialized by copying the data from the &[u8].

Creates a new Python bytearray object with an init closure to write its contents. Before calling init the bytearray is zero-initialised.

  • If Python raises a MemoryError on the allocation, new_with will return it inside Err.
  • If init returns Err(e), new_with will return Err(e).
  • If init returns Ok(()), new_with will return Ok(&PyByteArray).
Examples
use pyo3::{prelude::*, types::PyByteArray};

Python::with_gil(|py| -> PyResult<()> {
    let py_bytearray = PyByteArray::new_with(py, 10, |bytes: &mut [u8]| {
        bytes.copy_from_slice(b"Hello Rust");
        Ok(())
    })?;
    let bytearray: &[u8] = unsafe { py_bytearray.as_bytes() };
    assert_eq!(bytearray, b"Hello Rust");
    Ok(())
})

Creates a new Python bytearray object from another Python object that implements the buffer protocol.

Gets the length of the bytearray.

Checks if the bytearray is empty.

Gets the start of the buffer containing the contents of the bytearray.

Safety

See the safety requirements of PyByteArray::as_bytes and PyByteArray::as_bytes_mut.

Extracts a slice of the ByteArray’s entire buffer.

Safety

Mutation of the bytearray invalidates the slice. If it is used afterwards, the behavior is undefined.

These mutations may occur in Python code as well as from Rust:

  • Calling methods like PyByteArray::as_bytes_mut and PyByteArray::resize will invalidate the slice.
  • Actions like dropping objects or raising exceptions can invoke __del__methods or signal handlers, which may execute arbitrary Python code. This means that if Python code has a reference to the bytearray you cannot safely use the vast majority of PyO3’s API whilst using the slice.

As a result, this slice should only be used for short-lived operations without executing any Python code, such as copying into a Vec.

Examples
use pyo3::prelude::*;
use pyo3::exceptions::PyRuntimeError;
use pyo3::types::PyByteArray;

#[pyfunction]
fn a_valid_function(bytes: &PyByteArray) -> PyResult<()> {
    let section = {
        // SAFETY: We promise to not let the interpreter regain control
        // or invoke any PyO3 APIs while using the slice.
        let slice = unsafe { bytes.as_bytes() };

        // Copy only a section of `bytes` while avoiding
        // `to_vec` which copies the entire thing.
        let section = slice
            .get(6..11)
            .ok_or_else(|| PyRuntimeError::new_err("input is not long enough"))?;
        Vec::from(section)
    };

    // Now we can do things with `section` and call PyO3 APIs again.
    // ...

    Ok(())
}
Incorrect usage

The following bug function is unsound ⚠️


#[pyfunction]
fn bug(py: Python<'_>, bytes: &PyByteArray) {
    let slice = unsafe { bytes.as_bytes() };

    // This explicitly yields control back to the Python interpreter...
    // ...but it's not always this obvious. Many things do this implicitly.
    py.allow_threads(|| {
        // Python code could be mutating through its handle to `bytes`,
        // which makes reading it a data race, which is undefined behavior.
        println!("{:?}", slice[0]);
    });

    // Python code might have mutated it, so we can not rely on the slice
    // remaining valid. As such this is also undefined behavior.
    println!("{:?}", slice[0]);
}

Extracts a mutable slice of the ByteArray’s entire buffer.

Safety

Any other accesses of the bytearray’s buffer invalidate the slice. If it is used afterwards, the behavior is undefined. The safety requirements of PyByteArray::as_bytes apply to this function as well.

Copies the contents of the bytearray to a Rust vector.

Examples
let bytearray = PyByteArray::new(py, b"Hello World.");
let mut copied_message = bytearray.to_vec();
assert_eq!(b"Hello World.", copied_message.as_slice());

copied_message[11] = b'!';
assert_eq!(b"Hello World!", copied_message.as_slice());

pyo3::py_run!(py, bytearray, "assert bytearray == b'Hello World.'");

Resizes the bytearray object to the new length len.

Note that this will invalidate any pointers obtained by PyByteArray::data, as well as any (unsafe) slices obtained from PyByteArray::as_bytes and PyByteArray::as_bytes_mut.

Methods from Deref<Target = PyAny>

Converts this PyAny to a concrete Python type.

Examples
use pyo3::prelude::*;
use pyo3::types::{PyAny, PyDict, PyList};

Python::with_gil(|py| {
    let dict = PyDict::new(py);
    assert!(dict.is_instance_of::<PyAny>().unwrap());
    let any: &PyAny = dict.as_ref();
    assert!(any.downcast::<PyDict>().is_ok());
    assert!(any.downcast::<PyList>().is_err());
});

Returns whether self and other point to the same object. To compare the equality of two objects (the == operator), use eq.

This is equivalent to the Python expression self is other.

Determines whether this object has the given attribute.

This is equivalent to the Python expression hasattr(self, attr_name).

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern attr_name.

Retrieves an attribute value.

This is equivalent to the Python expression self.attr_name.

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern attr_name.

Example: intern!ing the attribute name
#[pyfunction]
fn version(sys: &PyModule) -> PyResult<&PyAny> {
    sys.getattr(intern!(sys.py(), "version"))
}

Sets an attribute value.

This is equivalent to the Python expression self.attr_name = value.

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern name.

Example: intern!ing the attribute name
#[pyfunction]
fn set_answer(ob: &PyAny) -> PyResult<()> {
    ob.setattr(intern!(ob.py(), "answer"), 42)
}

Deletes an attribute.

This is equivalent to the Python statement del self.attr_name.

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern attr_name.

Returns an Ordering between self and other.

This is equivalent to the following Python code:

if self == other:
    return Equal
elif a < b:
    return Less
elif a > b:
    return Greater
else:
    raise TypeError("PyAny::compare(): All comparisons returned false")
Examples
use pyo3::prelude::*;
use pyo3::types::PyFloat;
use std::cmp::Ordering;

Python::with_gil(|py| -> PyResult<()> {
    let a = PyFloat::new(py, 0_f64);
    let b = PyFloat::new(py, 42_f64);
    assert_eq!(a.compare(b)?, Ordering::Less);
    Ok(())
})?;

It will return PyErr for values that cannot be compared:

use pyo3::prelude::*;
use pyo3::types::{PyFloat, PyString};

Python::with_gil(|py| -> PyResult<()> {
    let a = PyFloat::new(py, 0_f64);
    let b = PyString::new(py, "zero");
    assert!(a.compare(b).is_err());
    Ok(())
})?;

Tests whether two Python objects obey a given CompareOp.

lt, le, eq, ne, gt and ge are the specialized versions of this function.

Depending on the value of compare_op, this is equivalent to one of the following Python expressions:

compare_opPython expression
CompareOp::Eqself == other
CompareOp::Neself != other
CompareOp::Ltself < other
CompareOp::Leself <= other
CompareOp::Gtself > other
CompareOp::Geself >= other
Examples
use pyo3::class::basic::CompareOp;
use pyo3::prelude::*;
use pyo3::types::PyInt;

Python::with_gil(|py| -> PyResult<()> {
    let a: &PyInt = 0_u8.into_py(py).into_ref(py).downcast()?;
    let b: &PyInt = 42_u8.into_py(py).into_ref(py).downcast()?;
    assert!(a.rich_compare(b, CompareOp::Le)?.is_true()?);
    Ok(())
})?;

Tests whether this object is less than another.

This is equivalent to the Python expression self < other.

Tests whether this object is less than or equal to another.

This is equivalent to the Python expression self <= other.

Tests whether this object is equal to another.

This is equivalent to the Python expression self == other.

Tests whether this object is not equal to another.

This is equivalent to the Python expression self != other.

Tests whether this object is greater than another.

This is equivalent to the Python expression self > other.

Tests whether this object is greater than or equal to another.

This is equivalent to the Python expression self >= other.

Determines whether this object appears callable.

This is equivalent to Python’s callable() function.

Examples
use pyo3::prelude::*;

Python::with_gil(|py| -> PyResult<()> {
    let builtins = PyModule::import(py, "builtins")?;
    let print = builtins.getattr("print")?;
    assert!(print.is_callable());
    Ok(())
})?;

This is equivalent to the Python statement assert callable(print).

Note that unless an API needs to distinguish between callable and non-callable objects, there is no point in checking for callability. Instead, it is better to just do the call and handle potential exceptions.

Calls the object.

This is equivalent to the Python expression self(*args, **kwargs).

Examples
use pyo3::prelude::*;
use pyo3::types::PyDict;

const CODE: &str = r#"
def function(*args, **kwargs):
    assert args == ("hello",)
    assert kwargs == {"cruel": "world"}
    return "called with args and kwargs"
"#;

Python::with_gil(|py| {
    let module = PyModule::from_code(py, CODE, "", "")?;
    let fun = module.getattr("function")?;
    let args = ("hello",);
    let kwargs = PyDict::new(py);
    kwargs.set_item("cruel", "world")?;
    let result = fun.call(args, Some(kwargs))?;
    assert_eq!(result.extract::<&str>()?, "called with args and kwargs");
    Ok(())
})

Calls the object without arguments.

This is equivalent to the Python expression self().

Examples
use pyo3::prelude::*;

Python::with_gil(|py| -> PyResult<()> {
    let module = PyModule::import(py, "builtins")?;
    let help = module.getattr("help")?;
    help.call0()?;
    Ok(())
})?;

This is equivalent to the Python expression help().

Calls the object with only positional arguments.

This is equivalent to the Python expression self(*args).

Examples
use pyo3::prelude::*;

const CODE: &str = r#"
def function(*args, **kwargs):
    assert args == ("hello",)
    assert kwargs == {}
    return "called with args"
"#;

Python::with_gil(|py| {
    let module = PyModule::from_code(py, CODE, "", "")?;
    let fun = module.getattr("function")?;
    let args = ("hello",);
    let result = fun.call1(args)?;
    assert_eq!(result.extract::<&str>()?, "called with args");
    Ok(())
})

Calls a method on the object.

This is equivalent to the Python expression self.name(*args, **kwargs).

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern name.

Examples
use pyo3::prelude::*;
use pyo3::types::PyDict;

const CODE: &str = r#"
class A:
    def method(self, *args, **kwargs):
        assert args == ("hello",)
        assert kwargs == {"cruel": "world"}
        return "called with args and kwargs"
a = A()
"#;

Python::with_gil(|py| {
    let module = PyModule::from_code(py, CODE, "", "")?;
    let instance = module.getattr("a")?;
    let args = ("hello",);
    let kwargs = PyDict::new(py);
    kwargs.set_item("cruel", "world")?;
    let result = instance.call_method("method", args, Some(kwargs))?;
    assert_eq!(result.extract::<&str>()?, "called with args and kwargs");
    Ok(())
})

Calls a method on the object without arguments.

This is equivalent to the Python expression self.name().

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern name.

Examples
use pyo3::prelude::*;

const CODE: &str = r#"
class A:
    def method(self, *args, **kwargs):
        assert args == ()
        assert kwargs == {}
        return "called with no arguments"
a = A()
"#;

Python::with_gil(|py| {
    let module = PyModule::from_code(py, CODE, "", "")?;
    let instance = module.getattr("a")?;
    let result = instance.call_method0("method")?;
    assert_eq!(result.extract::<&str>()?, "called with no arguments");
    Ok(())
})

Calls a method on the object with only positional arguments.

This is equivalent to the Python expression self.name(*args).

To avoid repeated temporary allocations of Python strings, the intern! macro can be used to intern name.

Examples
use pyo3::prelude::*;

const CODE: &str = r#"
class A:
    def method(self, *args, **kwargs):
        assert args == ("hello",)
        assert kwargs == {}
        return "called with args"
a = A()
"#;

Python::with_gil(|py| {
    let module = PyModule::from_code(py, CODE, "", "")?;
    let instance = module.getattr("a")?;
    let args = ("hello",);
    let result = instance.call_method1("method", args)?;
    assert_eq!(result.extract::<&str>()?, "called with args");
    Ok(())
})

Returns whether the object is considered to be true.

This is equivalent to the Python expression bool(self).

Returns whether the object is considered to be None.

This is equivalent to the Python expression self is None.

Returns true if the sequence or mapping has a length of 0.

This is equivalent to the Python expression len(self) == 0.

Gets an item from the collection.

This is equivalent to the Python expression self[key].

Sets a collection item value.

This is equivalent to the Python expression self[key] = value.

Deletes an item from the collection.

This is equivalent to the Python expression del self[key].

Takes an object and returns an iterator for it.

This is typically a new iterator but if the argument is an iterator, this returns itself.

Returns the Python type object for this object’s type.

Returns the Python type pointer for this object.

Casts self to a concrete Python object type.

This can cast only to native Python types, not types implemented in Rust.

Extracts some type from the Python object.

This is a wrapper function around FromPyObject::extract().

Returns the reference count for the Python object.

Computes the “repr” representation of self.

This is equivalent to the Python expression repr(self).

Computes the “str” representation of self.

This is equivalent to the Python expression str(self).

Retrieves the hash code of self.

This is equivalent to the Python expression hash(self).

Returns the length of the sequence or mapping.

This is equivalent to the Python expression len(self).

Returns the list of attributes of this object.

This is equivalent to the Python expression dir(self).

Checks whether this object is an instance of type ty.

This is equivalent to the Python expression isinstance(self, ty).

Checks whether this object is an instance of type T.

This is equivalent to the Python expression isinstance(self, T), if the type T is known at compile time.

Determines if self contains value.

This is equivalent to the Python expression value in self.

Returns a GIL marker constrained to the lifetime of this type.

Available on non-PyPy only.

Return a proxy object that delegates method calls to a parent or sibling class of type.

This is equivalent to the Python expression super()

Trait Implementations

Gets the underlying FFI pointer, returns a borrowed pointer.

Converts this type into a shared reference of the (usually inferred) input type.
Formats the value using the given formatter. Read more
The resulting type after dereferencing.
Dereferences the value.
Formats the value using the given formatter. Read more
Converts to this type from the input type.
Converts to this type from the input type.
Extracts Self from the source PyObject.
Performs the conversion.
Returns a GIL marker constrained to the lifetime of this type.
Cast &PyAny to &Self without no type checking. Read more
Utility type to make Py::as_ref work.
Class name.
Module name, if any.
Returns the PyTypeObject instance for this type.
Checks if object is an instance of this type or a subclass of this type.
Returns the safe abstraction over the type object.
Checks if object is an instance of this type.
Converts self into a Python object.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Convert from an arbitrary PyObject. Read more
Convert from an arbitrary borrowed PyObject. Read more
Convert from an arbitrary PyObject or panic. Read more
Convert from an arbitrary PyObject or panic. Read more
Convert from an arbitrary PyObject. Read more
Convert from an arbitrary borrowed PyObject. Read more
Convert from an arbitrary borrowed PyObject. Read more
Convert from an arbitrary borrowed PyObject. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Cast from a concrete Python object type to PyObject.
Cast from a concrete Python object type to PyObject. With exact type check.
Cast a PyAny to a specific type of PyObject. The caller must have already verified the reference is for this type. Read more
👎Deprecated since 0.17.0: this trait is no longer used by PyO3, use ToPyObject or IntoPy<PyObject>
Converts self into a Python object and calls the specified closure on the native FFI pointer underlying the Python object. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.