1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//! A module providing implementation of the standard
//! [Iterator](https://doc.rust-lang.org/std/iter/trait.Iterator.html),
//! as well as [Rayon's ParallelIterator](https://docs.rs/rayon/1.3.0/rayon/iter/trait.ParallelIterator.html)
//! if the `rayon_iter` feature flag is specified.

use super::RbVec;
use super::RrbVec;
use crate::core::rrbtree::iter::RrbTreeIter;
use crate::core::rrbtree::BRANCH_FACTOR;
use std::fmt::Debug;
use std::iter::FromIterator;

#[cfg(all(feature = "arc", feature = "rayon_iter"))]
use rayon::iter::plumbing::{bridge, Consumer, Producer, ProducerCallback, UnindexedConsumer};

#[cfg(all(feature = "arc", feature = "rayon_iter"))]
use rayon::prelude::{
    FromParallelIterator, IndexedParallelIterator, IntoParallelIterator, ParallelIterator,
};

macro_rules! impl_iter {
    ($vec:ident, $iter:ident) => {
        /// This struct keeps state necessary to implement Iterator
        /// for the tree-based vector. It takes the ownership of the vector
        /// contents. The iterator implementation consumes the contents of
        /// the RrbTree by chunks, this way reducing the number of the
        /// tree traversals.        
        #[derive(Debug, Clone)]
        pub struct $iter<T> {
            tree_iter: RrbTreeIter<T>,
            head_chunk: Option<([Option<T>; BRANCH_FACTOR], usize)>,
            head_chunk_idx: usize,
            head_idx: usize,
            tail_chunk: Option<([Option<T>; BRANCH_FACTOR], usize)>,
            tail_chunk_idx: usize,
            tail_idx: usize,
            len: usize,
        }

        impl<T: Clone + Debug> Iterator for $iter<T> {
            type Item = T;

            fn next(&mut self) -> Option<Self::Item> {
                if self.head_idx <= self.tail_idx {
                    if self.head_chunk.is_none() {
                        self.head_chunk = self.tree_iter.next();
                    }

                    let mut chunk = if self.head_chunk.is_some() {
                        self.head_chunk.as_mut()
                    } else {
                        self.tail_chunk.as_mut()
                    };

                    let head_chunk_idx = self.head_chunk_idx;
                    let item = chunk.as_mut().and_then(|it| it.0[head_chunk_idx].take());

                    self.head_idx += 1;
                    self.head_chunk_idx += 1;

                    if let Some(it) = chunk.as_ref() {
                        if self.head_chunk_idx == it.1 {
                            self.head_chunk = self.tree_iter.next();
                            self.head_chunk_idx = 0;
                        }
                    }

                    item
                } else {
                    None
                }
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                (self.len, Some(self.len))
            }
        }

        impl<T: Clone + Debug> DoubleEndedIterator for $iter<T> {
            fn next_back(&mut self) -> Option<Self::Item> {
                if self.head_idx <= self.tail_idx {
                    if self.tail_chunk.is_none() {
                        self.tail_chunk = self.tree_iter.next_back();
                        self.tail_chunk_idx = self
                            .tail_chunk
                            .as_ref()
                            .map(|chunk| chunk.1 - 1)
                            .unwrap_or(0);
                    }

                    let chunk = if self.tail_chunk.is_some() {
                        self.tail_chunk.as_mut()
                    } else {
                        self.head_chunk.as_mut()
                    };

                    let tail_chunk_idx = self.tail_chunk_idx;
                    let item = chunk.and_then(|it| it.0[tail_chunk_idx].take());

                    if self.tail_chunk_idx == 0 {
                        self.tail_chunk = self.tree_iter.next_back();
                        self.tail_chunk_idx = self
                            .tail_chunk
                            .as_ref()
                            .map(|chunk| chunk.1 - 1)
                            .unwrap_or(0);
                    } else {
                        self.tail_idx -= 1;
                        self.tail_chunk_idx -= 1;
                    }

                    item
                } else {
                    None
                }
            }
        }

        impl<T: Clone + Debug> ExactSizeIterator for $iter<T> {
            fn len(&self) -> usize {
                self.len
            }
        }

        impl<T: Clone + Debug> IntoIterator for $vec<T> {
            type Item = T;
            type IntoIter = $iter<T>;

            fn into_iter(self) -> Self::IntoIter {
                let len = self.len();

                let mut tail_chunk_idx = self.tail_len;
                let mut tail_idx = len;

                let tail_chunk = if self.tail_len > 0 {
                    Some((self.tail, self.tail_len))
                } else {
                    None
                };

                if tail_chunk_idx > 0 {
                    tail_chunk_idx -= 1;
                }

                if tail_idx > 0 {
                    tail_idx -= 1;
                }

                $iter {
                    tree_iter: self.tree.into_iter(),
                    head_chunk: None,
                    head_chunk_idx: 0,
                    head_idx: 0,
                    tail_chunk,
                    tail_chunk_idx,
                    tail_idx,
                    len,
                }
            }
        }

        impl<T: Clone + Debug> FromIterator<T> for $vec<T> {
            fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
                let mut vec = $vec::new();
                for i in iter {
                    vec.push(i);
                }
                vec
            }
        }
    };
}

impl_iter!(RbVec, RbVecIter);
impl_iter!(RrbVec, RrbVecIter);

macro_rules! impl_into_par_iter {
    ($vec:ident, $iter:ident, $pariter:ident, $producer:ident) => {
        /// This struct is used to implement the
        /// [parallel iterator](https://docs.rs/rayon/1.3.0/rayon/iter/trait.ParallelIterator.html)
        #[derive(Debug, Clone)]
        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        pub struct $pariter<T: Send + Sync + Debug + Clone> {
            vec: $vec<T>,
        }

        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        impl<T: Send + Sync + Debug + Clone> ParallelIterator for $pariter<T> {
            type Item = T;

            fn drive_unindexed<C>(self, consumer: C) -> C::Result
            where
                C: UnindexedConsumer<Self::Item>,
            {
                bridge(self, consumer)
            }

            fn opt_len(&self) -> Option<usize> {
                Some(self.vec.len())
            }
        }

        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        impl<T: Send + Sync + Debug + Clone> IndexedParallelIterator for $pariter<T> {
            fn drive<C>(self, consumer: C) -> C::Result
            where
                C: Consumer<Self::Item>,
            {
                bridge(self, consumer)
            }

            fn len(&self) -> usize {
                self.vec.len()
            }

            fn with_producer<CB>(self, callback: CB) -> CB::Output
            where
                CB: ProducerCallback<Self::Item>,
            {
                callback.callback($producer { vec: self.vec })
            }
        }

        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        struct $producer<T: Send + Sync + Debug + Clone> {
            vec: $vec<T>,
        }

        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        impl<T: Send + Sync + Debug + Clone> Producer for $producer<T> {
            type Item = T;
            type IntoIter = $iter<T>;

            fn into_iter(mut self) -> Self::IntoIter {
                std::mem::replace(&mut self.vec, $vec::new()).into_iter()
            }

            fn split_at(mut self, index: usize) -> (Self, Self) {
                let mut vec = std::mem::replace(&mut self.vec, $vec::new());

                let right = vec.split_off(index);
                let left = vec;

                ($producer { vec: left }, $producer { vec: right })
            }
        }

        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        impl<T: Send + Sync + Debug + Clone> IntoParallelIterator for $vec<T> {
            type Item = T;
            type Iter = $pariter<T>;

            fn into_par_iter(self) -> Self::Iter {
                $pariter { vec: self }
            }
        }

        #[cfg(all(feature = "arc", feature = "rayon_iter"))]
        impl<T: Clone + Debug + Send + Sync> FromParallelIterator<T> for $vec<T>
        where
            T: Send,
        {
            fn from_par_iter<I>(par_iter: I) -> Self
            where
                I: IntoParallelIterator<Item = T>,
            {
                par_iter
                    .into_par_iter()
                    .fold($vec::new, |mut vec, elem| {
                        vec.push(elem);
                        vec
                    })
                    .reduce($vec::new, |mut list1, mut list2| {
                        list1.append(&mut list2);
                        list1
                    })
            }
        }
    };
}

impl_into_par_iter!(RbVec, RbVecIter, RbVecParIter, RbVecProducer);
impl_into_par_iter!(RrbVec, RrbVecIter, RrbVecParIter, RrbVecProducer);

macro_rules! make_tests {
    ($vec:ident, $module:ident) => {
        #[cfg(test)]
        mod $module {
            use super::$vec;
            use super::BRANCH_FACTOR;

            #[test]
            fn empty_vec() {
                let vec_one: $vec<usize> = $vec::new();
                let vec_two: $vec<usize> = $vec::new();

                let mut iter_one = vec_one.into_iter();
                let mut iter_two = vec_two.into_iter();

                assert_eq!(iter_one.size_hint(), (0, Some(0)));
                assert_eq!(iter_one.next(), None);

                assert_eq!(iter_two.size_hint(), (0, Some(0)));
                assert_eq!(iter_two.next_back(), None);
            }

            #[test]
            fn has_tail_only() {
                let mut vec_one = $vec::new();
                let mut vec_two = $vec::new();

                for i in 0..BRANCH_FACTOR {
                    vec_one.push(i);
                    vec_two.push(i);
                }

                let mut iter_one = vec_one.into_iter();
                for i in 0..BRANCH_FACTOR {
                    assert_eq!(iter_one.next(), Some(i));
                }

                let mut iter_two = vec_two.into_iter();
                for i in (0..BRANCH_FACTOR).rev() {
                    assert_eq!(iter_two.next_back(), Some(i));
                }
            }

            #[test]
            fn underlying_tree_has_multiple_levels() {
                let mut vec_one = $vec::new();
                let mut vec_two = $vec::new();

                let mut val = 0;
                for _ in 0..(BRANCH_FACTOR * BRANCH_FACTOR * BRANCH_FACTOR) {
                    vec_one.push(val);
                    vec_two.push(val);
                    val += 1;
                }

                for _ in 0..(BRANCH_FACTOR / 2) {
                    vec_one.push(val);
                    vec_two.push(val);
                    val += 1;
                }

                let len_one = vec_one.len();
                let mut iter_one = vec_one.into_iter();

                for i in 0..len_one {
                    assert_eq!(iter_one.next(), Some(i));
                }

                let len_two = vec_two.len();
                let mut iter_two = vec_two.into_iter();

                for i in 0..len_two {
                    assert_eq!(iter_two.next(), Some(i));
                }
            }

            #[test]
            fn underlying_tree_is_relaxed() {
                let vec_size = 33;

                let mut vec = $vec::new();
                let mut vec_item = 0;

                for i in 0..128 {
                    if i % 2 == 0 {
                        let mut vec_temp = $vec::new();

                        for _ in 0..vec_size {
                            vec_temp.push(vec_item);
                            vec_item += 1;
                        }

                        assert_eq!(vec_temp.len(), vec_size);

                        vec.append(&mut vec_temp);

                        assert_eq!(vec_temp.len(), 0);
                    } else {
                        for _ in 0..(vec_size + vec_size) {
                            vec.push(vec_item);
                            vec_item += 1;
                        }
                    }

                    assert_eq!(vec.len(), vec_item);

                    for i in 0..vec.len() {
                        assert_eq!(*vec.get(i).unwrap(), i);
                        assert_eq!(*vec.get_mut(i).unwrap(), i);
                    }

                    let mut vec_one_clone = vec.clone();
                    for i in (0..vec_item).rev() {
                        assert_eq!(vec_one_clone.pop().unwrap(), i);
                    }

                    assert_eq!(vec_one_clone.len(), 0);
                    assert_eq!(vec.len(), vec_item);

                    let len = vec.len();

                    let mut iter_one = vec.clone().into_iter();
                    let mut iter_two = vec.clone().into_iter();

                    for i in 0..len {
                        assert_eq!(iter_one.next(), Some(i));
                    }

                    for i in (0..len).rev() {
                        assert_eq!(iter_two.next_back(), Some(i));
                    }
                }
            }

            #[test]
            fn sequential_calls_to_next_and_next_back() {
                let mut vec = $vec::new();

                let mut val = 0;
                for _ in 0..(BRANCH_FACTOR * BRANCH_FACTOR * BRANCH_FACTOR) {
                    vec.push(val);
                    val += 1;
                }

                for _ in 0..(BRANCH_FACTOR / 2) {
                    vec.push(val);
                    val += 1;
                }

                let len = vec.len();
                let mut iter = vec.into_iter();

                let mut next_i = 0;
                let mut next_back_i = len - 1;

                while next_i <= next_back_i {
                    assert_eq!(Some(next_i), iter.next());
                    assert_eq!(Some(next_back_i), iter.next_back());

                    next_i += 1;
                    next_back_i -= 1;
                }

                assert_eq!(iter.size_hint(), (len, Some(len)));
                assert_eq!(iter.next(), None);
                assert_eq!(iter.next_back(), None);
            }
        }
    };
}

make_tests!(RbVec, rbvec);
make_tests!(RrbVec, rrbvec);