[][src]Struct prost_types::Timestamp

pub struct Timestamp {
    pub seconds: i64,
    pub nanos: i32,
}

A Timestamp represents a point in time independent of any time zone or calendar, represented as seconds and fractions of seconds at nanosecond resolution in UTC Epoch time. It is encoded using the Proleptic Gregorian Calendar which extends the Gregorian calendar backwards to year one. It is encoded assuming all minutes are 60 seconds long, i.e. leap seconds are "smeared" so that no leap second table is needed for interpretation. Range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings. See https://www.ietf.org/rfc/rfc3339.txt.

Examples

Example 1: Compute Timestamp from POSIX time().

Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);

Example 2: Compute Timestamp from POSIX gettimeofday().

struct timeval tv;
gettimeofday(&tv, NULL);

Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);

Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().

FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;

// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));

Example 4: Compute Timestamp from Java System.currentTimeMillis().

long millis = System.currentTimeMillis();

Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
    .setNanos((int) ((millis % 1000) * 1000000)).build();

Example 5: Compute Timestamp from current time in Python.

timestamp = Timestamp()
timestamp.GetCurrentTime()

JSON Mapping

In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).

For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.

In JavaScript, one can convert a Date object to this format using the standard [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString] method. In Python, a standard datetime.datetime object can be converted to this format using strftime with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.

Fields

seconds: i64

Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.

nanos: i32

Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.

Trait Implementations

impl Clone for Timestamp[src]

fn clone_from(&mut self, source: &Self)
1.0.0
[src]

Performs copy-assignment from source. Read more

impl PartialEq<Timestamp> for Timestamp[src]

impl From<SystemTime> for Timestamp[src]

Converts a std::time::SystemTime to a Timestamp.

impl From<Timestamp> for Result<SystemTime, Duration>[src]

Converts a Timestamp to a SystemTime, or if the timestamp falls before the Unix epoch, a duration containing the difference.

impl Default for Timestamp[src]

impl Debug for Timestamp[src]

impl Message for Timestamp[src]

fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
    B: BufMut
[src]

Encodes the message to a buffer. Read more

fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
    B: BufMut
[src]

Encodes the message with a length-delimiter to a buffer. Read more

fn decode<B>(buf: B) -> Result<Self, DecodeError> where
    B: IntoBuf,
    Self: Default
[src]

Decodes an instance of the message from a buffer. Read more

fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
    B: IntoBuf,
    Self: Default
[src]

Decodes a length-delimited instance of the message from the buffer.

fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
    B: IntoBuf
[src]

Decodes an instance of the message from a buffer, and merges it into self. Read more

fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
    B: IntoBuf
[src]

Decodes a length-delimited instance of the message from buffer, and merges it into self. Read more

Auto Trait Implementations

impl Send for Timestamp

impl Sync for Timestamp

Blanket Implementations

impl<T> From for T[src]

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

impl<T, U> TryFrom for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.