1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//-
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Defines the core traits used by Proptest.

use std::fmt;
use std::sync::Arc;

use rand;
use rand::distributions::IndependentSample;

use test_runner::*;

/// A strategy for producing arbitrary values of a given type.
pub trait Strategy {
    /// The value tree generated by this `Strategy`.
    ///
    /// This also implicitly describes the ultimate value type governed by the
    /// `Strategy`.
    type Value : ValueTree;

    /// Generate a new value tree from the given runner.
    ///
    /// This may fail if there are constraints on the generated value and the
    /// generator is unable to produce anything that satisfies them. Any
    /// failure is wrapped in `TestError::Abort`.
    fn new_value
        (&self, runner: &mut TestRunner)
         -> Result<Self::Value, String>;

    /// Returns a strategy which produces values transformed by the function
    /// `fun`.
    ///
    /// There is no need (or possibility, for that matter) to define how the
    /// output is to be shrunken. Shrinking continues to take place in terms of
    /// the source value.
    fn prop_map<O : fmt::Debug,
                F : Fn (<Self::Value as ValueTree>::Value) -> O>
        (self, fun: F) -> Map<Self, F>
    where Self : Sized {
        Map { source: self, fun: Arc::new(fun) }
    }

    /// Returns a strategy which only produces values accepted by `fun`.
    ///
    /// This results in a very naïve form of rejection sampling and should only
    /// be used if (a) relatively few values will actually be rejected; (b) it
    /// isn't easy to express what you want by using another strategy and/or
    /// `map()`.
    ///
    /// There are a lot of downsides to this form of filtering. It slows
    /// testing down, since values must be generated but then discarded.
    /// Proptest only allows a limited number of rejects this way (across the
    /// entire `TestRunner`). Rejection can interfere with shrinking;
    /// particularly, complex filters may largely or entirely prevent shrinking
    /// from substantially altering the original value.
    ///
    /// Local rejection sampling is still preferable to rejecting the entire
    /// input to a test (via `TestCaseError::Reject`), however, and the default
    /// number of local rejections allowed is much higher than the number of
    /// whole-input rejections.
    ///
    /// `whence` is used to record where and why the rejection occurred.
    fn prop_filter<F : Fn (&<Self::Value as ValueTree>::Value) -> bool>
        (self, whence: String, fun: F) -> Filter<Self, F>
    where Self : Sized {
        Filter { source: self, whence: whence, fun: Arc::new(fun) }
    }

    /// Returns a strategy which picks uniformly from `self` and `other`.
    ///
    /// When shrinking, if a value from `other` was originally chosen but that
    /// value can be shrunken no further, it switches to a value from `self`
    /// and starts shrinking that.
    ///
    /// Be aware that chaining `prop_union` calls will result in a very
    /// right-skewed distribution. If this is not what you want, you can call
    /// the `.or()` method on the `Union` to add more values to the same union,
    /// or directly call `Union::new()`.
    ///
    /// Both `self` and `other` must be of the same type. To combine
    /// heterogeneous strategies, call the `boxed()` method on both `self` and
    /// `other` to erase the type differences before calling `prop_union()`.
    fn prop_union(self, other: Self) -> Union<Self>
    where Self : Sized {
        Union::new(vec![self, other])
    }

    /// Erases the type of this `Strategy` so it can be passed around as a
    /// simple trait object.
    fn boxed(self) -> BoxedStrategy<<Self::Value as ValueTree>::Value>
    where Self : Sized + 'static {
        Box::new(BoxedStrategyWrapper(self))
    }

    /// Wraps this strategy to prevent values from being subject to shrinking.
    ///
    /// Suppressing shrinking is useful when testing things like linear
    /// approximation functions. Ordinarily, proptest will tend to shrink the
    /// input to the function until the result is just barely outside the
    /// acceptable range whereas the original input may have produced a result
    /// far outside of it. Since this makes it harder to see what the actual
    /// problem is, making the input `NoShrink` allows learning about inputs
    /// that produce more incorrect results.
    fn no_shrink(self) -> NoShrink<Self> where Self : Sized {
        NoShrink(self)
    }
}

macro_rules! proxy_strategy {
    ($typ:ty $(, $lt:tt)*) => {
        impl<$($lt,)* S : Strategy + ?Sized> Strategy for $typ {
            type Value = S::Value;

            fn new_value(&self, runner: &mut TestRunner)
                         -> Result<Self::Value, String>
            { (**self).new_value(runner) }
        }
    };
}
proxy_strategy!(Box<S>);
proxy_strategy!(&'a S, 'a);
proxy_strategy!(&'a mut S, 'a);
proxy_strategy!(::std::rc::Rc<S>);
proxy_strategy!(::std::sync::Arc<S>);

/// A generated value and its associated shrinker.
///
/// Conceptually, a `ValueTree` represents a spectrum between a "minimally
/// complex" value and a starting, randomly-chosen value. For values such as
/// numbers, this can be thought of as a simple binary search, and this is how
/// the `ValueTree` state machine is defined.
///
/// The `ValueTree` state machine notionally has three fields: low, current,
/// and high. Initially, low is the "minimally complex" value for the type, and
/// high and current are both the initially chosen value. It can be queried for
/// its current state. When shrinking, the controlling code tries simplifying
/// the value one step. If the test failure still happens with the simplified
/// value, further simplification occurs. Otherwise, the code steps back up
/// towards the prior complexity.
///
/// The main invariants here are that the "high" value always corresponds to a
/// failing test case, and that repeated calls to `complicate()` will return
/// `false` only once the "current" value has returned to what it was before
/// the last call to `simplify()`.
pub trait ValueTree {
    /// The type of the value produced by this `ValueTree`.
    type Value : fmt::Debug;

    /// Returns the current value.
    fn current(&self) -> Self::Value;
    /// Attempts to simplify the current value. Notionally, this sets the
    /// "high" value to the current value, and the current value to a "halfway
    /// point" between high and low, rounding towards low.
    ///
    /// Returns whether any state changed as a result of this call.
    fn simplify(&mut self) -> bool;
    /// Attempts to partially undo the last simplification. Notionally, this
    /// sets the "low" value to one plus the current value, and the current
    /// value to a "halfway point" between high and the new low, rounding
    /// towards low.
    ///
    /// Returns whether any state changed as a result of this call.
    fn complicate(&mut self) -> bool;
}

impl<T : ValueTree + ?Sized> ValueTree for Box<T> {
    type Value = T::Value;
    fn current(&self) -> Self::Value { (**self).current() }
    fn simplify(&mut self) -> bool { (**self).simplify() }
    fn complicate(&mut self) -> bool { (**self).complicate() }
}

/// Shorthand for a boxed `Strategy` trait object as produced by
/// `Strategy::boxed()`.
pub type BoxedStrategy<T> = Box<Strategy<Value = Box<ValueTree<Value = T>>>>;

struct BoxedStrategyWrapper<T>(T);
impl<T : Strategy> Strategy for BoxedStrategyWrapper<T>
where T::Value : 'static {
    type Value = Box<ValueTree<Value = <T::Value as ValueTree>::Value>>;

    fn new_value(&self, runner: &mut TestRunner)
        -> Result<Self::Value, String>
    {
        Ok(Box::new(self.0.new_value(runner)?))
    }
}

/// `Strategy` and `ValueTree` map adaptor.
///
/// See `Strategy::prop_map()`.
#[derive(Debug)]
pub struct Map<S, F> {
    source: S,
    fun: Arc<F>,
}

impl<S : Clone, F> Clone for Map<S, F> {
    fn clone(&self) -> Self {
        Map {
            source: self.source.clone(),
            fun: self.fun.clone(),
        }
    }
}

impl<S : Strategy, O : fmt::Debug,
     F : Fn (<S::Value as ValueTree>::Value) -> O>
Strategy for Map<S, F> {
    type Value = Map<S::Value, F>;

    fn new_value(&self, runner: &mut TestRunner)
                 -> Result<Self::Value, String> {
        self.source.new_value(runner).map(
            |v| Map { source: v, fun: self.fun.clone() })
    }
}

impl<S : ValueTree, O : fmt::Debug, F : Fn (S::Value) -> O>
ValueTree for Map<S, F> {
    type Value = O;

    fn current(&self) -> O {
        (self.fun)(self.source.current())
    }

    fn simplify(&mut self) -> bool {
        self.source.simplify()
    }

    fn complicate(&mut self) -> bool {
        self.source.complicate()
    }
}

/// `Strategy` and `ValueTree` filter adaptor.
///
/// See `Strategy::prop_filter()`.
#[derive(Debug)]
pub struct Filter<S, F> {
    source: S,
    whence: String,
    fun: Arc<F>,
}

impl<S : Clone, F> Clone for Filter<S, F> {
    fn clone(&self) -> Self {
        Filter {
            source: self.source.clone(),
            whence: self.whence.clone(),
            fun: self.fun.clone(),
        }
    }
}

impl<S : Strategy,
     F : Fn (&<S::Value as ValueTree>::Value) -> bool>
Strategy for Filter<S, F> {
    type Value = Filter<S::Value, F>;

    fn new_value(&self, runner: &mut TestRunner)
                 -> Result<Self::Value, String> {
        loop {
            let val = self.source.new_value(runner)?;
            if !(self.fun)(&val.current()) {
                runner.reject_local(self.whence.clone())?;
            } else {
                return Ok(Filter {
                    source: val,
                    whence: self.whence.clone(),
                    fun: self.fun.clone(),
                })
            }
        }
    }
}

impl<S : ValueTree, F : Fn (&S::Value) -> bool>
Filter<S, F> {
    fn ensure_acceptable(&mut self) {
        while !(self.fun)(&self.source.current()) {
            if !self.source.complicate() {
                panic!("Unable to complicate filtered strategy \
                        back into acceptable value");
            }
        }
    }
}

impl<S : ValueTree, F : Fn (&S::Value) -> bool>
ValueTree for Filter<S, F> {
    type Value = S::Value;

    fn current(&self) -> S::Value {
        self.source.current()
    }

    fn simplify(&mut self) -> bool {
        if self.source.simplify() {
            self.ensure_acceptable();
            true
        } else {
            false
        }
    }

    fn complicate(&mut self) -> bool {
        if self.source.complicate() {
            self.ensure_acceptable();
            true
        } else {
            false
        }
    }
}

/// A `Strategy` which picks from one of several delegate `Stragegy`s.
///
/// See `Strategy::prop_union()`.
#[derive(Clone, Debug)]
pub struct Union<T : Strategy> {
    options: Vec<T>,
}

impl<T : Strategy> Union<T> {
    /// Create a strategy which selects uniformly from the given delegate
    /// strategies.
    ///
    /// When shrinking, after maximal simplification of the chosen element, the
    /// strategy will move to earlier options and continue simplification with
    /// those.
    ///
    /// ## Panics
    ///
    /// Panics if `options` is empty.
    pub fn new(options: Vec<T>) -> Self {
        assert!(options.len() > 0);

        Union { options: options }
    }

    /// Add `other` as an additional alternate strategy.
    pub fn or(mut self, other: T) -> Self {
        self.options.push(other);
        self
    }
}

impl<T : Strategy> Strategy for Union<T> {
    type Value = UnionValueTree<T::Value>;

    fn new_value(&self, runner: &mut TestRunner)
                 -> Result<Self::Value, String> {
        let pick = rand::distributions::Range::new(0, self.options.len())
            .ind_sample(runner.rng());

        let mut options = Vec::with_capacity(pick);
        for option in &self.options {
            options.push(option.new_value(runner)?);
        }

        Ok(UnionValueTree {
            options: options,
            pick: pick,
            min_pick: 0,
            prev_pick: None,
        })
    }
}

/// `ValueTree` corresponding to `Union`.
#[derive(Clone, Debug)]
pub struct UnionValueTree<T : ValueTree> {
    options: Vec<T>,
    pick: usize,
    min_pick: usize,
    prev_pick: Option<usize>,
}

impl<T : ValueTree> ValueTree for UnionValueTree<T> {
    type Value = T::Value;

    fn current(&self) -> T::Value {
        self.options[self.pick].current()
    }

    fn simplify(&mut self) -> bool {
        if self.options[self.pick].simplify() {
            self.prev_pick = None;
            true
        } else if self.pick > self.min_pick {
            self.prev_pick = Some(self.pick);
            self.pick -= 1;
            true
        } else {
            false
        }
    }

    fn complicate(&mut self) -> bool {
        if let Some(pick) = self.prev_pick {
            self.pick = pick;
            self.min_pick = pick;
            self.prev_pick = None;
            true
        } else {
            self.options[self.pick].complicate()
        }
    }
}

/// A `Strategy` which always produces the same value and never simplifies.
#[derive(Clone, Copy, Debug)]
pub struct Singleton<T : Clone + fmt::Debug>(
    /// The value produced by this strategy.
    pub T);

impl<T : Clone + fmt::Debug> Strategy for Singleton<T> {
    type Value = Self;

    fn new_value(&self, _: &mut TestRunner) -> Result<Self::Value, String> {
        Ok(self.clone())
    }
}

impl<T : Clone + fmt::Debug> ValueTree for Singleton<T> {
    type Value = T;

    fn current(&self) -> T {
        self.0.clone()
    }

    fn simplify(&mut self) -> bool { false }
    fn complicate(&mut self) -> bool { false }
}

/// Wraps a `Strategy` or `ValueTree` to suppress shrinking of generated
/// values.
///
/// See `Strategy::no_shrink()` for more details.
#[derive(Clone, Copy, Debug)]
pub struct NoShrink<T>(T);

impl<T : Strategy> Strategy for NoShrink<T> {
    type Value = NoShrink<T::Value>;

    fn new_value(&self, runner: &mut TestRunner)
                 -> Result<Self::Value, String> {
        self.0.new_value(runner).map(NoShrink)
    }
}

impl<T : ValueTree> ValueTree for NoShrink<T> {
    type Value = T::Value;

    fn current(&self) -> T::Value {
        self.0.current()
    }

    fn simplify(&mut self) -> bool { false }
    fn complicate(&mut self) -> bool { false }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_map() {
        TestRunner::new(Config::default())
            .run(&(0..10).prop_map(|v| v * 2), |&v| {
                assert!(0 == v % 2);
                Ok(())
            }).unwrap();
    }

    #[test]
    fn test_filter() {
        let input = (0..256).prop_filter("%3".to_owned(), |&v| 0 == v % 3);

        for _ in 0..256 {
            let mut runner = TestRunner::new(Config::default());
            let mut case = input.new_value(&mut runner).unwrap();

            assert!(0 == case.current() % 3);

            while case.simplify() {
                assert!(0 == case.current() % 3);
            }
            assert!(0 == case.current() % 3);
        }
    }

    #[test]
    fn test_union() {
        let input = (10u32..20u32).prop_union(30u32..40u32);
        // Expect that 25% of cases pass (left input happens to be < 15, and
        // left is chosen as initial value). Of the 75% that fail, 50% should
        // converge to 15 and 50% to 30 (the latter because the left is beneath
        // the passing threshold).
        let mut passed = 0;
        let mut converged_low = 0;
        let mut converged_high = 0;
        for _ in 0..256 {
            let mut runner = TestRunner::new(Config::default());
            let case = input.new_value(&mut runner).unwrap();
            let result = runner.run_one(case, |&v| if v < 15 {
                Ok(())
            } else {
                Err(TestCaseError::Fail("fail".to_owned()))
            });

            match result {
                Ok(true) => passed += 1,
                Err(TestError::Fail(_, 15)) => converged_low += 1,
                Err(TestError::Fail(_, 30)) => converged_high += 1,
                e => panic!("Unexpected result: {:?}", e),
            }
        }

        assert!(passed >= 32 && passed <= 96,
                "Bad passed count: {}", passed);
        assert!(converged_low >= 32 && converged_low <= 160,
                "Bad converged_low count: {}", converged_low);
        assert!(converged_high >= 32 && converged_high <= 160,
                "Bad converged_high count: {}", converged_high);
    }
}