1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
//! Helper macros and traits built around
//! [tokio-postgres](https://docs.rs/tokio-postgres/0.5.1/tokio_postgres/index.html) to define
//! queries with human readable parameters and return values.
//!
//! # Example
//!
//! ```
//! # use tokio_postgres::Client;
//! # use postgres_query::{query, FromSqlRow, Result};
//! # fn connect() -> Client { unimplemented!() }
//! # async fn foo() -> Result<()> {
//! // Connect to the database
//! let client: Client = connect(/* ... */);
//!
//! // Construct the query
//! let query = query!(
//!     "SELECT age, name FROM people WHERE age >= $min_age",
//!     min_age = 18
//! );
//!
//! // Define the structure of the data returned from the query
//! #[derive(FromSqlRow)]
//! struct Person {
//!     age: i32,
//!     name: String,
//! }
//!
//! // Execute the query
//! let people: Vec<Person> = query.fetch(&client).await?;
//!
//! for person in people {
//!     println!("{} is {} years young", person.name, person.age);
//! }
//! # Ok(())
//! # }
//! ```
//!
//! # Queries
//!
//! The preferred way of constructing a new [`Query`] is through the [`query!`] macro. It uses a
//! syntax similar to the `format!(...)` family of macros from the standard library. The first
//! parameter is the SQL query and is always given as a string literal (this might be relaxed in the
//! future).  This string literal may contain parameter bindings on the form `$ident` where `ident`
//! is any valid Rust identifier (`$abc`, `$value_123`, etc.).
//!
//! ```
//! # use postgres_query::query;
//! let age = 42;
//! let insert_person = query!(
//!     "INSERT INTO people VALUES ($age, $name)",
//!     name = "John Wick", // Binds "$name" to "John Wick"
//!     age,                // Binds "$age" to the value of `age`
//! );
//! ```
//!
//! During compilation the query is converted into the format expected by PostgreSQL: parameter
//! bindings are converted to using numbers ($1, $2, etc.) and the actual parameter values are put
//! into a 1-indexed array. The code snippet above would be expanded into the following:
//!
//! ```
//! # use postgres_query::*;
//! let age = 42;
//! let insert_person = Query::new_static(
//!     "INSERT INTO people VALUES ($1, $2)",
//!     vec![&age, &"John Wick"],
//! );
//! ```
//!
//!
//! ## Dynamic Queries
//!
//! If necessary, queries may be constructed from `&str`s at runtime instead of the usual
//! compile-time string literals expected by the `query!` macro. This is achieved by using the
//! [`query_dyn!`] macro instead. In addition to dynamic queries, parameter bindings may also be
//! dynamically: 
//!
//! ```
//! # use postgres_query::*;
//! let mut sql = "SELECT * FROM people WHERE name = $name".to_string();
//! let mut bindings = Vec::new();
//!
//! // Add a filter at runtime
//! sql += " AND age > $min_age";
//! bindings.push(("min_age", &42 as Parameter));
//!
//! let query: Result<Query> = query_dyn!(
//!     &sql,
//!     name = "John",
//!     ..bindings,
//! );
//! ```
//!
//! Using dynamic queries does introduce some errors that cannot be caught at runtime: such as some
//! parameters in the query not having a matching binding. Because of this the value returned by the
//! [`query_dyn!`] macro is not a `Query` but a `Result<Query>` which carries an error you must
//! handle:
//!
//! ```
//! # use postgres_query::*;
//! let mut sql = "SELECT * FROM people".to_string();
//! sql += " WHERE age <= $max_age AND name = $name";
//!
//! let query: Result<Query> = query_dyn!(
//!     &sql,
//!     name = "John",
//!     // Forgot to bind the parameter `max_age`. 
//!     // Will result in an error.
//! );
//!
//! assert!(query.is_err());
//! ```
//! 
//!
//! # Data Extraction
//!
//! In addition to helping you define new queries this crate provides the [`FromSqlRow`] trait which
//! makes it easy to extract typed values from the resulting rows. The easiest way to implement this
//! trait for new `struct`s is to use the included [`derive(FromSqlRow)`] macro.
//!
//! - If used on a tuple struct, values will be extracted from the corresponding columns based on
//! their position in the tuple.
//! - If used on a stuct with named fields, values will be extracted from the column with the same
//! name as the field.
//!
//! ```
//! # use postgres_query::*;
//! #[derive(FromSqlRow)]
//! struct TupleData(i32, String);
//!
//! #[derive(FromSqlRow)]
//! struct NamedData {
//!     age: i32,
//!     name: String,
//! };
//! ```
//!
//! ## Multi-mapping
//!
//! If you query the same table multiple times it gets tedious to have to redefine structs with the
//! same fields over and over. Preferably we would like to reuse the same definition multiple times.
//! We can do this be utilizing "multi-mapping".
//!
//!
//! ### Partitions
//!
//! Multi-mapping works by splitting the columns of rows returned by a query into multiple
//! partitions (or slices). For example, if we had the query `SELECT books.*, authors.* FROM ...`,
//! we would like to extract the data into two structs: `Book` and `Author`. We accomplish this by
//! looking at the columns returned by the database and splitting them into partitions:
//!
//! ```text
//! Columns:    id, title, release_date, genre, id, name, birthyear
//! Partitions: +------------Book-------------+ +------Author-----+
//! ```
//!
//!
//! ### Partitioning schemes
//!
//! There are two supported ways to partition a row: either we specify the number of columns
//! required to populate each struct (in the example above: 4 columns for Book and 3 for author), or
//! we split on the name of a column. The former should generally only be used when you know the
//! number of columns isn't going to change. The latter is less prone to break provided you choose
//! an appropriate column to split on (a good candidate is usually `id` as almost all tables have
//! this as their first
//! column).
//!
//! You choose which partitioning scheme you want to use by using the provided
//! [attributes](./derive.FromSqlRow.html#attributes). In order to accomplish the partitioning in
//! the example above we could split on the column name `id`:
//!
//! ```
//! # use postgres_query::FromSqlRow;
//! #[derive(FromSqlRow)]
//! struct Book {
//!     id: i32,
//!     title: String,
//!     release_date: String,
//!     genre: String,
//! }
//!
//! #[derive(FromSqlRow)]
//! struct Author {
//!     id: i32,
//!     name: String,
//!     birthyear: i32,
//! }
//!
//! #[derive(FromSqlRow)]
//! #[row(split)]
//! struct BookAuthor {
//!     #[row(flatten, split = "id")]
//!     book: Book,
//!     #[row(flatten, split = "id")]
//!     author: Author,
//! }
//! ```
//!
//! Alternatively, we can make `Author` a part of the `Book` struct:
//!
//! ```
//! # use postgres_query::FromSqlRow;
//! #[derive(FromSqlRow)]
//! struct Author {
//!     id: i32,
//!     name: String,
//!     birthyear: i32,
//! }
//!
//! #[derive(FromSqlRow)]
//! #[row(split)]
//! struct Book {
//!     #[row(split = "id")]
//!     id: i32,
//!     title: String,
//!     release_date: String,
//!     genre: String,
//!
//!     #[row(flatten, split = "id")]
//!     author: Author,
//! }
//! ```
//!
//! ### Many-to-one Relationships
//! 
//! In the previous examples we had a `Book` that contained an `Author`. This is what is called a
//! many-to-one relationship, since one book only has one author, but many books may share the same
//! author (or so we assume anyway). What if you instead had `Author` an author that contained many
//! `Book`s? We know that one author may write many books, so that is a one-to-many relationship. We
//! can write an extractor for that case as well:
//! 
//! ```
//! # use postgres_query::*;
//! # use tokio_postgres::Client;
//! # async fn foo() -> Result<()> {
//! # let client: Client = unimplemented!();
//! #[derive(FromSqlRow)]
//! #[row(split, group)]
//! struct Author {
//!     #[row(split = "id", key)]
//!     id: i32,
//!     name: String,
//!     birthyear: i32,
//!
//!     #[row(split = "id", merge)]
//!     books: Vec<Book>,
//! }
//!
//! #[derive(FromSqlRow)]
//! struct Book {
//!     id: i32,
//!     title: String,
//!     release_date: String,
//!     genre: String,
//! }
//!
//! let authors: Vec<Author> = query!(
//!         "SELECT authors.*, books.*
//!          INNER JOIN books ON books.author = authors.id
//!          GROUP BY authors.id"
//!     )
//!     .fetch(&client)
//!     .await?;
//! # Ok(())
//! # }
//! ```
//!
//! See the section on [attributes](./derive.FromSqlRow.html#attributes) for a more advanced
//! in-depth explanation of multi-mapping.
//!
//!
//! # Caching queries
//!
//! From time to time you probably want to execute the same query multiple times, but with different
//! parameters. In times like these we can decrease the load on the database by preparing our
//! queries before executing them. By wrapping a client in a [`Caching`] struct this behaviour is
//! automatically provided for all queries that originate from this crate:
//!
//! ```
//! # use tokio_postgres::Client;
//! # use postgres_query::{query, Result, Caching};
//! # fn connect() -> Client { unimplemented!() }
//! # async fn foo() -> Result<()> {
//! // Connect to the database
//! let client: Client = connect(/* ... */);
//!
//! // Wrap the client in a query cache
//! let cached_client = Caching::new(client);
//!
//! for age in 0..100i32 {
//!     let query = query!("SELECT name, weight FROM people WHERE age = $age", age);
//!
//!     // The query is prepared and cached the first time it's executed.
//!     // All subsequent fetches will use the cached Statement.
//!     let people: Vec<(String, i32)> = query.fetch(&cached_client).await?;
//!     
//!     /* Do something with people */
//! }
//! # Ok(())
//! # }
//! ```
//!
//! [`Query`]: struct.Query.html
//! [`query!`]: macro.query.html
//! [`query_dyn!`]: macro.query_dyn.html
//! [`FromSqlRow`]: extract/trait.FromSqlRow.html
//! [`derive(FromSqlRow)`]: derive.FromSqlRow.html
//! [`Caching`]: client/struct.Caching.html

pub mod client;
pub mod execute;
pub mod extract;

mod error;
mod parse;

use postgres_types::ToSql;
use proc_macro_hack::proc_macro_hack;
use std::ops::Deref;

pub use crate::client::Caching;
pub use crate::error::{Error, Result};
pub use crate::extract::FromSqlRow;

/// Extract values from a row.
///
/// - If used on a tuple struct, values will be extracted from the corresponding columns based on
/// their position in the tuple.
/// - If used on a stuct with named fields, values will be extracted from the column with the same
/// name as the field.
///
/// # Example
///
/// ```
/// # use postgres_query::*;
/// #[derive(FromSqlRow)]
/// struct TupleData(i32, String);
///
/// #[derive(FromSqlRow)]
/// struct NamedData {
///     age: i32,
///     name: String,
/// };
/// ```
///
///
/// # Attributes
///
/// Data extraction can be customized by using the `#[row(...)]` attribute. Attributes can be
/// separated into two categories, those which go on the container itself:
///
/// - [`#[row(exact)]`](#rowexact)
/// - [`#[row(split)]`](#rowsplit)
/// - [`#[row(group)]`](#rowgroup)
/// - [`#[row(hash)]`](#rowhash)
///
/// and those which are placed on the container's fields:
///
/// - [`#[row(rename = "...")]`](#rowrename--)
/// - [`#[row(flatten)]`](#rowflatten)
/// - [`#[row(stride = N)]`](#rowstride--n)
/// - [`#[row(split = "...")]`](#rowsplit--)
/// - [`#[row(key)]`](#rowkey)
/// - [`#[row(merge)]`](#rowmerge)
///
///
/// ## Container attributes
///
/// These attributes are put on the struct itself.
///
///
/// ### `#[row(exact)]`
///
/// [Partition](./index.html#multi-mapping) the row according to the number of columns matched by
/// each group.
///
/// Note that no order is forced upon fields within any group. In the example below, that means that
/// even though the `generation` and `origin` fields are flipped relative to the query, the
/// extraction will be successful:
///
/// ```
/// # use postgres_query::{FromSqlRow, Result, query};
/// # use tokio_postgres::Client;
/// # async fn foo() -> Result<()> {
/// # let client: Client = unimplemented!();
/// #[derive(FromSqlRow)]
/// #[row(exact)]
/// struct Family {
///     generation: i32,
///     origin: String,
///     #[row(flatten)]
///     parent: Person,
///     #[row(flatten)]
///     child: Person,
/// }
///
/// #[derive(FromSqlRow)]
/// struct Person {
///     id: i32,
///     name: String,
/// }
///
/// let family = query!(
///     "SELECT
///         'Germany' as origin, 7 as generation,
///         1 as id, 'Bob' as name,
///         2 as id, 'Ike' as name"
///     )
///     .fetch_one::<Family, _>(&client)
///     .await?;
/// # Ok(())
/// # }
/// ```
///
/// ### `#[row(split)]`
///
/// [Partition](./index.html#multi-mapping) the row according to the field's [split
/// points](extract/fn.split_columns_many.html#split-points).
///
/// Split points are introduced by using the [`#[row(split = "...")]`](#rowsplit---1) attribute on
/// fields.
///
/// ```
/// # use postgres_query::{FromSqlRow, Result, query};
/// # use tokio_postgres::Client;
/// # async fn foo() -> Result<()> {
/// # let client: Client = unimplemented!();
/// #[derive(FromSqlRow)]
/// #[row(split)]
/// struct Family {
///     generation: i32,
///     origin: String,
///     #[row(flatten, split = "id")]
///     parent: Person,
///     #[row(flatten, split = "id")]
///     child: Person,
/// }
///
/// #[derive(FromSqlRow)]
/// struct Person {
///     id: i32,
///     name: String,
/// }
///
/// let family = query!(
///     "SELECT
///         'Germany' as origin, 7 as generation,
///         1 as id, 'Bob' as name,
///         2 as id, 'Ike' as name"
///     )
///     .fetch_one::<Family, _>(&client)
///     .await?;
/// # Ok(())
/// # }
/// ```
///
///
/// ### `#[row(group)]`
///
/// Enables one-to-many mapping for the container. One-to-many mapping requires that at least one
/// field has the `#[row(key)]` attribute and that one other field has the `#[row(merge)]` attribute.
///
/// When extracting values from multiple rows, any two **adjacent** rows that are identical on their
/// fields marked with `#[row(key)]` will have their fields tagged with `#[row(merge)]` merged. This
/// means that in order to get the expected relation back, you may need to include a `GROUP BY`
/// statement in your SQL query, hence the name `group`.
///
/// ```
/// # use postgres_query::*;
/// # use tokio_postgres::Client;
/// # async fn foo() -> Result<()> {
/// # let client: Client = unimplemented!();
/// #[derive(Debug, FromSqlRow)]
/// #[row(group)]
/// struct Author {
///     #[row(key)]
///     name: String,
///
///     #[row(merge)]
///     books: Vec<Book>,
/// }
///
/// #[derive(Debug, FromSqlRow)]
/// struct Book {
///     title: String,
/// }
///
/// let authors = query!(
///         "SELECT 'J.R.R. Tolkien' as name, 'The Fellowship of the Ring' as title
///          UNION ALL SELECT 'J.R.R. Tolkien', 'The Two Towers'
///          UNION ALL SELECT 'Andrzej Sapkowski', 'The Last Wish'
///          UNION ALL SELECT 'J.R.R. Tolkien', 'Return of the King'")
///     .fetch::<Author, _>(&client)
///     .await?;
///
/// assert_eq!(authors[0].name, "J.R.R. Tolkien");
/// assert_eq!(authors[0].books[0].title, "The Fellowship of the Ring");
/// assert_eq!(authors[0].books[1].title, "The Two Towers");
///
/// assert_eq!(authors[1].name, "Andrzej Sapkowski");
/// assert_eq!(authors[1].books[0].title, "The Last Wish");
///
/// assert_eq!(authors[2].name, "J.R.R. Tolkien");
/// assert_eq!(authors[2].books[0].title, "Return of the King");
/// # Ok(())
/// # }
/// ```
///
///
/// ### `#[row(hash)]`
///
/// Like `#[row(group)]`, but all previous rows are considered when merging. This is accomplished by
/// using a `HashMap`, hence the name. This implies that all keys have to implement the `Hash` and
/// `Eq` traits:
///
/// ```
/// # use postgres_query::*;
/// # use tokio_postgres::Client;
/// # async fn foo() -> Result<()> {
/// # let client: Client = unimplemented!();
/// #[derive(Debug, FromSqlRow)]
/// #[row(hash)]
/// struct Author {
///     #[row(key)]
///     name: String,
///
///     #[row(merge)]
///     books: Vec<Book>,
/// }
///
/// #[derive(Debug, FromSqlRow)]
/// struct Book {
///     title: String,
/// }
///
/// let authors = query!(
///         "SELECT 'J.R.R. Tolkien' as name, 'The Fellowship of the Ring' as title
///          UNION ALL SELECT 'J.R.R. Tolkien', 'The Two Towers'
///          UNION ALL SELECT 'Andrzej Sapkowski', 'The Last Wish'
///          UNION ALL SELECT 'J.R.R. Tolkien', 'Return of the King'")
///     .fetch::<Author, _>(&client)
///     .await?;
///
/// assert_eq!(authors[0].name, "J.R.R. Tolkien");
/// assert_eq!(authors[0].books[0].title, "The Fellowship of the Ring");
/// assert_eq!(authors[0].books[1].title, "The Two Towers");
/// assert_eq!(authors[0].books[2].title, "Return of the King");
///
/// assert_eq!(authors[1].name, "Andrzej Sapkowski");
/// assert_eq!(authors[1].books[0].title, "The Last Wish");
/// # Ok(())
/// # }
/// ```
///
/// ## Field attributes
///
/// These attributes are put on the fields of a container.
///
///
/// ### `#[row(rename = "...")]`
///
/// Use a name other than that of the field when looking up the name of the column.
///
/// ```
/// # use postgres_query::FromSqlRow;
/// #[derive(FromSqlRow)]
/// struct Person {
///     age: i32,
///     // matches the column named "first_name" instead of "name"
///     #[row(rename = "first_name")]
///     name: String,
/// }
/// ```
///
/// ### `#[row(flatten)]`
///
/// Flatten the contents of this field into its container by recursively calling `FromSqlRow` on the
/// field's type. This removes one level of nesting:
///
/// ```
/// # use postgres_query::{FromSqlRow, query, Result};
/// # use tokio_postgres::Client;
/// # async fn foo() -> Result<()> {
/// # let client: Client = unimplemented!();
/// #[derive(FromSqlRow)]
/// struct Customer {
///     id: i32,
///     #[row(flatten)]
///     info: Person,
/// }
///
/// #[derive(FromSqlRow)]
/// struct Person {
///     name: String,
///     age: i32
/// }
///
/// let customer: Customer = query!("SELECT 14 as id, 'Bob' as name, 47 as age")
///     .fetch_one(&client)
///     .await?;
///
/// assert_eq!(customer.id, 14);
/// assert_eq!(customer.info.name, "Bob");
/// assert_eq!(customer.info.age, 47);
/// # Ok(())
/// # }
/// ```
///
/// ### `#[row(stride = N)]`
///
/// Puts this field into a partition with exactly `N` columns. Only available when using the
/// `#[row(exact)]` attribute on the container,
///
/// ```
/// # use postgres_query::{FromSqlRow, query, Result};
/// # use tokio_postgres::Client;
/// # async fn foo() -> Result<()> {
/// # let client: Client = unimplemented!();
/// #[derive(Debug, FromSqlRow)]
/// struct Person {
///     id: i32,
///     name: String,
/// }
///
/// #[derive(Debug, FromSqlRow)]
/// #[row(exact)]
/// struct Family {
///     // Matches first 4 columns
///     #[row(flatten, stride = 4)]
///     parent: Person,
///     // Matches last 3 columns
///     #[row(flatten, stride = 3)]
///     child: Person,
/// }
///
/// let family = query!(
///     "SELECT
///         11 as generation,
///         1 as id, 'Bob' as name, 42 as age,
///         2 as id, 'Ike' as name, 14 as age"
///     )
///     .fetch_one::<Family, _>(&client)
///     .await?;
///     
/// assert_eq!(family.parent.id, 1);
/// assert_eq!(family.parent.name, "Bob");
/// assert_eq!(family.child.id, 2);
/// assert_eq!(family.child.name, "Ike");
/// # Ok(())
/// # }
/// ```
///
/// ### `#[row(split = "...")]`
///
/// Introduce an additional [split](extract/fn.split_columns_many.html#split-points) right
/// before this field. Requires that the container has the `split` attribute as well.
///
/// Intuitively this splits the row in two parts: every field before this attribute matches the
/// columns before the split and every field afterwards matches the second remaining columns.
///
/// ```
/// # use postgres_query::{FromSqlRow};
/// #[derive(FromSqlRow)]
/// #[row(split)]
/// struct User {
///     // `id` and `name` will only match the columns before `email`
///     id: i32,
///     name: String,
///     #[row(split = "email")]
///     // `email`, `address` and `shoe_size` will only
///     // match the columns after and including `email`
///     email: String,
///     address: String,
///     shoe_size: i32,
/// }
/// ```
///
/// Note that the first split always matches first occurence of that column. This can result in some
/// subtle bugs:
///
/// ```
/// # use postgres_query::{FromSqlRow, query};
/// #[derive(FromSqlRow)]
/// #[row(split)]
/// struct Family {
///     #[row(flatten)]
///     parent: Person,
///     #[row(flatten, split = "id")]
///     child: Person,
/// }
///
/// #[derive(FromSqlRow)]
/// struct Person {
///     name: String,
///     age: i32
/// }
///
/// let query = query!("SELECT parent.*, child.* FROM ...");
///
/// // Imagine the query above results in the following columns:
/// //
/// // Columns:                id, name, id, name
/// // Splits:                |
/// // Partitions:  +-parent-+ +-----child------+
/// ```
///
/// The split causes `parent` to match against all columns before the first `id`, ie. an empty
/// partition. This would cause an error when executing the query.
///
/// A correct split would look like this:
///
/// ```
/// # use postgres_query::{FromSqlRow, query};
/// # #[derive(FromSqlRow)] struct Person;
/// #[derive(FromSqlRow)]
/// #[row(split)]
/// struct Family {
///     #[row(flatten, split = "id")]
///     parent: Person,
///     #[row(flatten, split = "id")]
///     child: Person,
/// }
/// ```
///
///
/// ### `#[row(key)]`
///
/// Specifies this field to be a `key` field. `key` fields are compared against each other when
/// extracting values from multiple rows. Rows are merged if the key fields in each row are
/// identical. You may have multiple `key` fields within a single container, but none of them may
/// have the `#[row(merge)]` attribute. Multiple `key` fields will be treated as a tuple in
/// comparisons.
///
///
/// ### `#[row(merge)]`
///
/// Specifies this field to be a `merge` field. This requires that the field's type implements the
/// [`Merge`] trait. When two rows have been deemed to be equal based on the `key` fields, the
/// corresponding `merge` fields in those rows will be merged. You may specify multiple `merge`
/// fields within one container, but none of them may have the `#[row(key)]` attribute.
///
/// [`Merge`]: extract/trait.Merge.html
pub use postgres_query_macro::FromSqlRow;

/// Constructs a new query at compile-time. See also `query_dyn!`.
///
/// # Usage
///
/// This macro expands to an expression with the type `Query`.
///
/// The first parameter is the SQL query and is always given as a string literal. This string
/// literal may contain parameter bindings on the form `$ident` where `ident` is any valid Rust
/// identifier (`$abc`, `$value_123`, etc.). The order of the parameters does not matter.
///
/// ```
/// # use postgres_query::query;
/// let age = 42;
/// let insert_person = query!(
///     "INSERT INTO people VALUES ($age, $name)",
///     name = "John Wick", // Binds "$name" to "John Wick"
///     age,                // Binds "$age" to the value of `age`
/// );
/// ```
///
/// During compilation the query is converted into the format expected by PostgreSQL: parameter
/// bindings are converted to using numbers (`$1`, `$2`, etc.) and the actual parameter values are
/// put into a 1-indexed array. The code snippet above would be expanded into the following:
///
/// ```
/// # use postgres_query::*;
/// let age = 42;
/// let insert_person = Query::new_static(
///     "INSERT INTO people VALUES ($1, $2)",
///     vec![&age, &"John Wick"],
/// );
/// ```
#[macro_export]
macro_rules! query {
    ($($tt:tt)*) => {
        $crate::__query_static!($($tt)*)
    };
}

/// Constructs a new query dynamically at runtime. See also `query!`.
///
/// # Usage
///
/// This macro expands to an expression with the type `Result<Query>`.
///
/// The first parameter is the SQL query and is always given as a `&str`. This string may contain
/// parameter bindings on the form `$ident` where `ident` is any valid Rust identifier (`$abc`,
/// `$value_123`, etc.). The order of the parameters does not matter.
///
/// ```
/// # use postgres_query::{query_dyn, Result};
/// # fn foo() -> Result<()> {
/// // We can construct the actual query at runtime
/// let mut sql = "INSERT INTO people VALUES".to_owned();
/// sql.push_str("($age, $name)");
///
/// let age = 42;
///
/// let insert_person = query_dyn!(
///     &sql,
///     name = "John Wick", // Binds "$name" to "John Wick"
///     age,                // Binds "$age" to the value of `age`
/// )?;
/// # Ok(())
/// # }
/// ```
///
/// The query and all the parameters are passed into `Query::parse`, so the above would be expanded
/// into:
///
/// ```
/// # use postgres_query::Query;
/// // We can construct the actual query at runtime
/// let mut sql = "INSERT INTO people VALUES".to_string();
/// sql.push_str("($age, $name)");
///
/// let age = 42;
///
/// let insert_person = Query::parse(
///     &sql,
///     &[("name", &"John Wick"), ("age", &age)],
/// );
/// ```
///
///
/// ## Dynamic Binding
///
/// Optionally, you may also choose to include additional bindings at runtime by using the
/// `..bindings` syntax. This is supported for any type that implements `IntoIterator<Item = (&str,
/// Parameter)>`, ie. `Vec<(&str, Parameter)>`, `HashMap<&str, Parameter>`, `Option<(&str,
/// Parameter)>`, iterators, and so on.
///
/// Dynamic bindings may be mixed with static bindings:
///
/// ```
/// # use postgres_query::{query_dyn, Parameter, Result};
/// # fn foo() -> Result<()> {
/// let mut bindings = Vec::new();
///
/// // We use the `as Parameter` to please the type checker.
/// // Alternatively, we could specify the type for bindings: `Vec<(&str, Parameter)>`.
/// bindings.push(("age", &42 as Parameter));
/// bindings.push(("name", &"John Wick" as Parameter));
///
/// let sql = "INSERT INTO people VALUES ($age, $name, $height)".to_string();
/// let insert_person = query_dyn!(
///     &sql,
///     height = 192,
///     ..bindings,
/// )?;
/// # Ok(())
/// # }
/// ```
///
///
/// # A larger example
///
/// Let's say that we wanted to dynamically add filters to our query:
///
/// ```
/// # use postgres_query::{query_dyn, Parameter, Query, Result};
/// # fn foo() -> Result<()> {
/// // We have the query we want to execute
/// let mut sql = "SELECT * FROM people".to_string();
///
/// // and some filters we got from the user.
/// let age_filter: Option<i32> = Some(32);
/// let name_filter: Option<&str> = None;
///
/// // Then we dynamically build a list of filters and bindings to use:
/// let mut filters = Vec::new();
/// let mut bindings = Vec::new();
///
/// // We add the filters as needed.
/// if let Some(age) = age_filter.as_ref() {
///     filters.push("age > $min_age");
///     bindings.push(("min_age", age as Parameter));
/// }
///
/// if let Some(name) = name_filter.as_ref() {
///     filters.push("name LIKE $name");
///     bindings.push(("name", name as Parameter));
/// }
///
/// // And add them to the query.
/// if filters.len() > 0 {
///     sql += &format!(" WHERE {}", filters.join(" AND "));
/// }
///
/// // Then we can use it as normal.
/// let query: Query = query_dyn!(&sql, ..bindings)?;
/// # Ok(())
/// # }
/// ```
#[macro_export]
macro_rules! query_dyn {
    ($($tt:tt)*) => {
        $crate::__query_dynamic!($($tt)*)
    };
}

#[proc_macro_hack]
#[doc(hidden)]
pub use postgres_query_macro::{query_dynamic as __query_dynamic, query_static as __query_static};

/// A shorthand for types that can be treated as SQL parameters.
///
/// A common use case for this type alias is when using dynamic bindings and you have to please the
/// type checker:
///
/// ```
/// # use postgres_query::{Parameter, query_dyn, Result};
/// # fn foo() -> Result<()> {
/// let mut bindings = Vec::new();
///
/// // Without the `as Parameter` the compiler assumes the type to be `&i32`.
/// bindings.push(("age", &32 as Parameter));
///
/// // Which would cause problems when adding something that is not an integer.
/// bindings.push(("name", &"John" as Parameter));
///
/// let query = query_dyn!(
///     "SELECT * FROM people WHERE age > $age AND name = $name",
///     ..bindings
/// )?;
/// # Ok(())
/// # }
/// ```
///
/// Alternatively we could just set the type on the container explicitly:
///
/// ```
/// # use postgres_query::Parameter;
/// let mut bindings: Vec<(&str, Parameter)> = Vec::new();
/// ```
pub type Parameter<'a> = &'a (dyn ToSql + Sync);

/// A static query with dynamic parameters.
///
/// # Usage
///
/// ## Constructing
///
/// The preferred way of constructing a [`Query`] is by using the [`query!`] and [`query_dyn!`]
/// macros.
///
/// You may also use the `Query::parse`, `Query::new_static` or `Query::new` methods.
///
///
/// ## Executing
///
/// When executing the query you have two options, either:
///
/// 1. use the provided methods: `execute`, `fetch`, `query`, etc.
/// 2. use the `sql` and `parameters` fields as arguments to the standard [`Client`] methods
///
/// ```
/// # use tokio_postgres::{Client, Row};
/// # use postgres_query::{query, FromSqlRow, Result};
/// # fn connect() -> Client { unimplemented!() }
/// # async fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// #[derive(FromSqlRow)]
/// struct Person {
///     age: i32,
///     name: String,
/// }
///
/// let client: Client = connect(/* ... */);
/// let query = query!("SELECT age, name FROM people");
///
/// // Option 1
/// let people: Vec<Person> = query.fetch(&client).await?;
///
/// // Option 2
/// let rows: Vec<Row> = client.query(query.sql(), query.parameters()).await?;
/// let people: Vec<Person> = Person::from_row_multi(&rows)?;
/// # Ok(())
/// # }
/// ```
///
/// [`Query`]: struct.Query.html
/// [`query!`]: macro.query.html
/// [`query_dyn!`]: macro.query_dyn.html
/// [`Client`]: https://docs.rs/tokio-postgres/0.5.1/tokio_postgres/struct.Client.html
#[derive(Debug, Clone)]
pub struct Query<'a> {
    sql: Sql,
    parameters: Vec<Parameter<'a>>,
}

#[derive(Debug, Clone)]
enum Sql {
    Static(&'static str),
    Dynamic(String),
}

impl<'a> Query<'a> {
    /// Create a new query an already prepared string.
    ///
    /// IMPORTANT: This does not allow you to pass named parameter bindings (`$name`, `$abc_123`,
    /// etc.). For that behaviour, refer to the `query!` macro. Instead bindings and parameters are
    /// given in the same format required by `tokio_postgres` (`$1`, `$2`, ...).
    pub fn new(sql: String, parameters: Vec<Parameter<'a>>) -> Query<'a> {
        Query {
            sql: Sql::Dynamic(sql),
            parameters,
        }
    }

    /// Create a new query with a static query string.
    ///
    /// IMPORTANT: This does not allow you to pass named parameter bindings (`$name`, `$abc_123`,
    /// etc.), For that behaviour, refer to the `query_dyn!` macro. Instead bindings and parameters
    /// are given in the same format required by `tokio_postgres` (`$1`, `$2`, ...).
    pub fn new_static(sql: &'static str, parameters: Vec<Parameter<'a>>) -> Query<'a> {
        Query {
            sql: Sql::Static(sql),
            parameters,
        }
    }

    /// Parses a string that may contain parameter bindings on the form `$abc_123`. This is the same
    /// function that is called when passing dynamically generated strings to the `query_dyn!`
    /// macro.
    ///
    /// Because this is a function there will some runtime overhead unlike the `query!` macro which
    /// has zero overhead when working with string literals.
    pub fn parse(text: &str, bindings: &[(&str, Parameter<'a>)]) -> Result<Query<'a>> {
        let (sql, parameters) = parse::parse(text, bindings)?;

        Ok(Query {
            sql: Sql::Dynamic(sql),
            parameters,
        })
    }

    /// Get this query as an SQL string.
    pub fn sql(&'a self) -> &'a str {
        &self.sql
    }

    /// Get the parameters of this query in the order expected by the query returned by
    /// `Query::sql`.
    pub fn parameters(&'a self) -> &[Parameter<'a>] {
        &self.parameters
    }
}

impl Deref for Sql {
    type Target = str;

    fn deref(&self) -> &Self::Target {
        match self {
            Sql::Static(text) => text,
            Sql::Dynamic(text) => &text,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::error::ParseError;

    macro_rules! is_match {
        ($expr:expr, $pattern:pat) => {
            match $expr {
                $pattern => true,
                _ => false,
            }
        };
    }

    #[test]
    fn parse_query_without_bindings() {
        let query = Query::parse("SELECT 123, 'abc'", &[]).unwrap();
        assert_eq!(query.sql(), "SELECT 123, 'abc'");
    }

    #[test]
    fn parse_query_single_binding() {
        let query = Query::parse("SELECT $number", &[("number", &123)]).unwrap();
        assert_eq!(query.sql(), "SELECT $1");
    }

    #[test]
    fn parse_query_missing_identifier_eof() {
        let query = Query::parse("SELECT $", &[]);
        assert!(is_match!(
            query.unwrap_err(),
            Error::Parse(ParseError::EmptyIdentifier { found: None })
        ));
    }

    #[test]
    fn parse_query_missing_identifier() {
        let query = Query::parse("SELECT $ FROM users", &[]);
        assert!(is_match!(
            query.unwrap_err(),
            Error::Parse(ParseError::EmptyIdentifier { found: Some(' ') })
        ));
    }
}