1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//! # Deserialization Flavors
//!
//! "Flavors" in `postcard` are used as modifiers to the serialization or deserialization
//! process. Flavors typically modify one or both of the following:
//!
//! 1. The source medium of the deserialization, e.g. whether the data is serialized from a `[u8]` slice, or some other container
//! 2. The format of the deserialization, such as if the original data is encoded in a COBS format, contains a CRC32 checksum
//!      appended to the message, etc.
//!
//! Flavors are implemented using the [`Flavor`] trait, which acts as a "middleware" for retrieving the bytes before they
//! are passed to `serde` for deserialization
//!
//! Multiple flavors may be combined to obtain a desired combination of behavior and storage.
//! When flavors are combined, it is expected that the storage flavor (such as [`Slice`]) is the innermost flavor.
//!
//! Custom flavors may be defined by users of the `postcard` crate, however some commonly useful flavors have been provided in
//! this module. If you think your custom flavor would be useful to others, PRs adding flavors are very welcome!
//!
//! ## Usability
//!
//! Flavors may not always be convenient to use directly, as they may expose some implementation details of how the
//! inner workings of the flavor behaves. It is typical to provide a convenience method for using a flavor, to prevent
//! the user from having to specify generic parameters, setting correct initialization values, or handling the output of
//! the flavor correctly. See `postcard::from_bytes()` for an example of this.
//!
//! ## When to use (multiple) flavors
//!
//! Combining flavors are nice for convenience, as they perform potentially multiple steps of
//! serialization at one time.
//!
//! This can often be more memory efficient, as intermediate buffers are not typically required.
//!
//! ## When NOT to use (multiple) flavors
//!
//! The downside of passing deserialization through multiple steps is that it is typically slower than
//! performing each step serially. Said simply, "cobs decoding while deserializing" is often slower
//! than "cobs decode then deserialize", due to the ability to handle longer "runs" of data in each
//! stage. The downside is that if these stages can not be performed in-place on the buffer, you
//! will need additional buffers for each stage.
//!
//! Additionally, deserializating flavors can be more restrictive or difficult to work with than
//! serialization flavors, as deserialization may require that the deserialized types borrow some
//! portion of the original message.
//!
//! ## Examples
//!
//! ### Using a single flavor
//!
//! In the first example, we use the `Slice` flavor, to retrieve the serialized output from a `[u8]` slice.
//! No other modification is made to the serialization process.
//!
//! ```rust
//! use postcard::{
//!     de_flavors::Slice,
//!     Deserializer,
//! };
//! use serde::Deserialize;
//!
//! #[derive(Deserialize, Debug, PartialEq)]
//! struct Tup(u8, u8, u8);
//!
//! let msg = [0x04, 0x00, 0x04, 0x01, 0x02, 0x03];
//! let slice = Slice::new(&msg);
//! let mut deserializer = Deserializer::from_flavor(slice);
//! let t = Tup::deserialize(&mut deserializer).unwrap();
//! assert_eq!(t, Tup(4, 0, 4));
//! let remainder = deserializer.finalize().unwrap();
//! assert_eq!(remainder, &[1, 2, 3]);
//! ```

use crate::{Error, Result};
use core::marker::PhantomData;

/// The deserialization Flavor trait
///
/// This is used as the primary way to decode serialized data from some kind of buffer,
/// or modify that data in a middleware style pattern.
///
/// See the module level docs for an example of how flavors are used.
pub trait Flavor<'de>: 'de {
    /// The remaining data of this flavor after deserializing has completed.
    ///
    /// Typically, this includes the remaining buffer that was not used for
    /// deserialization, and in cases of more complex flavors, any additional
    /// information that was decoded or otherwise calculated during
    /// the deserialization process.
    type Remainder: 'de;

    /// The source of data retrieved for deserialization.
    ///
    /// This is typically some sort of data buffer, or another Flavor, when
    /// chained behavior is desired
    type Source: 'de;

    /// Obtain the next byte for deserialization
    fn pop(&mut self) -> Result<u8>;

    /// Attempt to take the next `ct` bytes from the serialized message
    fn try_take_n(&mut self, ct: usize) -> Result<&'de [u8]>;

    /// Complete the deserialization process.
    ///
    /// This is typically called separately, after the `serde` deserialization
    /// has completed.
    fn finalize(self) -> Result<Self::Remainder>;
}

/// A simple [`Flavor`] representing the deserialization from a borrowed slice
pub struct Slice<'de> {
    // This string starts with the input data and characters are truncated off
    // the beginning as data is parsed.
    pub(crate) cursor: *const u8,
    pub(crate) end: *const u8,
    pub(crate) _pl: PhantomData<&'de [u8]>,
}

impl<'de> Slice<'de> {
    /// Create a new [Slice] from the given buffer
    pub fn new(sli: &'de [u8]) -> Self {
        Self {
            cursor: sli.as_ptr(),
            end: unsafe { sli.as_ptr().add(sli.len()) },
            _pl: PhantomData,
        }
    }
}

impl<'de> Flavor<'de> for Slice<'de> {
    type Remainder = &'de [u8];
    type Source = &'de [u8];

    #[inline]
    fn pop(&mut self) -> Result<u8> {
        if self.cursor == self.end {
            Err(Error::DeserializeUnexpectedEnd)
        } else {
            unsafe {
                let res = Ok(*self.cursor);
                self.cursor = self.cursor.add(1);
                res
            }
        }
    }

    #[inline]
    fn try_take_n(&mut self, ct: usize) -> Result<&'de [u8]> {
        let remain = (self.end as usize) - (self.cursor as usize);
        if remain < ct {
            Err(Error::DeserializeUnexpectedEnd)
        } else {
            unsafe {
                let sli = core::slice::from_raw_parts(self.cursor, ct);
                self.cursor = self.cursor.add(ct);
                Ok(sli)
            }
        }
    }

    /// Return the remaining (unused) bytes in the Deserializer
    fn finalize(self) -> Result<&'de [u8]> {
        let remain = (self.end as usize) - (self.cursor as usize);
        unsafe { Ok(core::slice::from_raw_parts(self.cursor, remain)) }
    }
}

// This is a terrible checksum implementation to make sure that we can effectively
// use the deserialization flavor. This is kept as a test (and not published)
// because an 8-bit checksum is not ACTUALLY useful for almost anything.
//
// You could certainly do something similar with a CRC32, cryptographic sig,
// or something else
#[cfg(test)]
mod test {
    use super::*;
    use serde::{Deserialize, Serialize};

    struct Checksum<'de, F>
    where
        F: Flavor<'de> + 'de,
    {
        flav: F,
        checksum: u8,
        _plt: PhantomData<&'de ()>,
    }

    impl<'de, F> Checksum<'de, F>
    where
        F: Flavor<'de> + 'de,
    {
        pub fn from_flav(flav: F) -> Self {
            Self {
                flav,
                checksum: 0,
                _plt: PhantomData,
            }
        }
    }

    impl<'de, F> Flavor<'de> for Checksum<'de, F>
    where
        F: Flavor<'de> + 'de,
    {
        type Remainder = (<F as Flavor<'de>>::Remainder, u8);
        type Source = F;

        fn pop(&mut self) -> Result<u8> {
            match self.flav.pop() {
                Ok(u) => {
                    self.checksum = self.checksum.wrapping_add(u);
                    Ok(u)
                }
                Err(e) => Err(e),
            }
        }
        fn try_take_n(&mut self, ct: usize) -> Result<&'de [u8]> {
            match self.flav.try_take_n(ct) {
                Ok(u) => {
                    u.iter().for_each(|u| {
                        self.checksum = self.checksum.wrapping_add(*u);
                    });
                    Ok(u)
                }
                Err(e) => Err(e),
            }
        }
        fn finalize(self) -> Result<Self::Remainder> {
            Ok((self.flav.finalize()?, self.checksum))
        }
    }

    #[derive(Serialize, Deserialize, PartialEq, Eq, Debug)]
    pub struct SomeData<'a> {
        #[serde(borrow)]
        sli: &'a [u8],
        sts: &'a str,
        foo: u64,
        bar: u128,
    }

    #[test]
    fn smoke() {
        const EXPECTED: &[u8] = &[
            4, 255, 1, 34, 51, 19, 116, 104, 105, 115, 32, 105, 115, 32, 97, 32, 103, 111, 111,
            100, 32, 116, 101, 115, 116, 170, 213, 170, 213, 170, 213, 170, 213, 170, 1, 255, 255,
            255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127,
        ];

        // Calculate simple 8-bit checksum
        let mut check: u8 = 0;
        EXPECTED.iter().for_each(|u| check = check.wrapping_add(*u));

        let mut buf = [0u8; 256];
        let data = SomeData {
            sli: &[0xFF, 0x01, 0x22, 0x33],
            sts: "this is a good test",
            foo: (u64::MAX / 3) * 2,
            bar: u128::MAX / 4,
        };
        let used = crate::to_slice(&data, &mut buf).unwrap();
        assert_eq!(used, EXPECTED);
        let used = used.len();

        // Put the checksum at the end
        buf[used] = check;

        let mut deser = crate::de::Deserializer::from_flavor(Checksum::from_flav(Slice::new(&buf)));

        let t = SomeData::<'_>::deserialize(&mut deser).unwrap();
        assert_eq!(t, data);

        // Normally, you'd probably expect the check
        let (rem, cksm) = deser.finalize().unwrap();

        // The pre-calculated checksum we stuffed at the end is the
        // first "unused" byte
        assert_eq!(rem[0], check);

        // the one we calculated during serialization matches the
        // pre-calculated one
        assert_eq!(cksm, check);
    }
}