1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use std;
use num::complex::Complex;

/// Provides the trilogarithm function `li3()` of a number of type
/// `T`.
pub trait Li3<T> {
    fn li3(&self) -> T;
}

/// Returns the trilogarithm of a real number of type `f64`.
///
/// # Example:
/// ```
/// extern crate num;
/// extern crate polylog;
/// use num::complex::Complex;
/// use polylog::Li3;
///
/// fn main() {
///     let z = Complex::new(1.0, 1.0);
///     println!("Li3({}) = {}", z, z.li3());
/// }
/// ```
impl Li3<Complex<f64>> for Complex<f64> {
    fn li3(&self) -> Complex<f64> {
        let pi  = 3.1415926535897932384626433832795;
        let pi2 = pi*pi;
        let eps = std::f64::EPSILON;
        let z3  = 1.2020569031595942853997381615114;
        let bf  = [
            1., -3./8., 17./216., -5./576.,
             0.00012962962962962962962962962962963,  0.000081018518518518518518518518518519,
            -3.4193571608537594932152755282007e-06, -1.3286564625850340136054421768707e-06 ,
             8.6608717561098513479465860418241e-08,  2.5260875955320399764844209288654e-08 ,
            -2.1446944683640647609338850757365e-09, -5.1401106220129789153358176927200e-10 ,
             5.2495821146008294363940888085581e-11,  1.0887754406636318375372971570425e-11 ,
            -1.2779396094493695305581831754072e-12, -2.3698241773087452099797778810124e-13 ,
             3.1043578879654622942847532704656e-14,  5.2617586299125060841318392511225e-15 ,
            -7.5384795499492653659925014322677e-16, -1.1862322577752285253082500951246e-16 ,
             1.8316979965491383382089273121282e-17,  2.7068171031837350151490734712617e-18 ,
            -4.4554338978296388264326309921763e-19, -6.2375484922556946503653222473984e-20 ,
             1.0851521534874534913136560996864e-20,  1.4491174866036081930734904966528e-21 ,
            -2.6466339754458990334740891186144e-22, -3.3897653488510104721925816586081e-23 ,
             6.4640477336033108890325309821953e-24,  7.9758344896024124242092227259050e-25 ,
            -1.5809178790287483355921117629383e-25, -1.8861499729622868193110225398853e-26 ,
             3.8715536638418473303997127188831e-27,  4.4801175002345607304865389832051e-28 ,
            -9.4930338719118361264175367602770e-29, -1.0682813809077381224018214303381e-29 ,
             2.3304478936103051860078519901928e-30,  2.5560775726519754080563569828670e-31 ,
            -5.7274216061372596844727445803306e-32, -6.1347132137964235825854929689777e-33
        ];

        if is_close(self, 0., eps) {
            return Complex::new(0., 0.);
        }
        if is_close(self, 1., eps) {
            return Complex::new(z3, 0.);
        }
        if is_close(self, 1., 0.02) {
            let i    = Complex::i();
            let ipi  = Complex::new(0., pi);
            let zm1  = *self - 1.;
            let lzm1 = zm1.cln();
            let ceil = if zm1.arg() > 0. { 1. } else { 0. };
            let cs: [Complex<f64>; 8] = [
                Complex::new(pi2/6., 0.),
                (ceil*ipi - lzm1/2. - 1./12.*pow2(3.*i + pi)),
                (lzm1/2. + 1./36.*(-21. - 18.*(-1. + 2.*ceil)*ipi + 2.*pi2)),
                (-11./24.*lzm1 + 1./288.*(131. + 132.*(-1. + 2.*ceil)*ipi - 12.*pi2)),
                (5./12.*lzm1 + 1./720.*(-265. - 300.*(-1. + 2.*ceil)*ipi + 24.*pi2)),
                (-137./360.*lzm1 + 1./7200.*(2213. + 2740.*(-1. + 2.*ceil)*ipi - 200.*pi2)),
                (-947./3600. - 7./20.*(-1. + 2.*ceil)*ipi + 7./20.*lzm1 + pi2/42.),
                (647707./2822400. + 363.*(-1. + 2.*ceil)*ipi/1120. - 363./1120.*lzm1 - pi2/48.),
            ];

            return z3 +
                zm1 * (cs[0] +
                zm1 * (cs[1] +
                zm1 * (cs[2] +
                zm1 * (cs[3] +
                zm1 * (cs[4] +
                zm1 * (cs[5] +
                zm1 * (cs[6] +
                zm1 * (cs[7]))))))));
        }
        if is_close(self, -1., eps) {
            return Complex::new(-0.75*z3, 0.);
        }
        if is_close(self, 0.5, eps) {
            let ln2  = 0.6931471805599453; // ln(2)
            let ln23 = 0.3330246519889295; // ln(2)^3
            return Complex::new((-2.*pi2*ln2 + 4.*ln23 + 21.*z3)/24., 0.);
        }

        let (u, rest) = if self.norm() <= 1. {
            (-(1. - self).cln(), Complex::new(0.,0.))
        } else { // az > 1.
            (-(1. - 1./self).cln(), -pow3((-self).cln())/6. - pi2/6.*(-self).cln())
        };

        rest +
        u * (bf[0] +
        u * (bf[1] +
        u * (bf[2] +
        u * (bf[3] +
        u * (bf[4] +
        u * (bf[5] +
        u * (bf[6] +
        u * (bf[7] +
        u * (bf[8] +
        u * (bf[9] +
        u * (bf[10] +
        u * (bf[11] +
        u * (bf[12] +
        u * (bf[13] +
        u * (bf[14] +
        u * (bf[15] +
        u * (bf[16] +
        u * (bf[17] +
        u * (bf[18] +
        u * (bf[19] +
        u * (bf[20] +
        u * (bf[21] +
        u * (bf[22] +
        u * (bf[23] +
        u * (bf[24] +
        u * (bf[25] +
        u * (bf[26] +
        u * (bf[27] +
        u * (bf[28] +
        u * (bf[29] +
        u * (bf[30] +
        u * (bf[31] +
        u * (bf[32] +
        u * (bf[33] +
        u * (bf[34] +
        u * (bf[35] +
        u * (bf[36] +
        u * (bf[37] +
        u * (bf[38] +
        u * (bf[39]))))))))))))))))))))))))))))))))))))))))
    }
}

fn is_close(a : &Complex<f64>, b : f64, eps : f64) -> bool {
    (a.re - b).abs() < eps && (a.im).abs() < eps
}

fn pow2(z : Complex<f64>) -> Complex<f64> {
    z * z
}

fn pow3(z : Complex<f64>) -> Complex<f64> {
    z * z * z
}

trait CLn<T> {
    fn cln(&self) -> T;
}

impl CLn<Complex<f64>> for Complex<f64> {
    fn cln(&self) -> Complex<f64> {
        Complex::new(
            if self.re == 0. { 0. } else { self.re },
            if self.im == 0. { 0. } else { self.im },
        ).ln()
    }
}