1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
use std;
use num::complex::Complex;

/// Provides the dilogarithm function `li2()` of a number of type `T`.
pub trait Li2<T> {
    fn li2(&self) -> T;
}

/// Returns the dilogarithm of a real number of type `f64`.
///
/// This function has been translated from the
/// [ROOT](https://root.cern.ch/) package.
///
/// # Example:
/// ```
/// use polylog::Li2;
///
/// let z = 1.0;
/// println!("Li2({}) = {}", z, z.li2());
/// ```
impl Li2<f64> for f64 {
    fn li2(&self) -> f64 {
        let pi  = 3.1415926535897932384626433832795;
        let pi2 = pi*pi;
        let pi3 = pi2/3.;
        let pi6 = pi2/6.;
        let coeffs = [0.42996693560813697, 0.40975987533077105,
           -0.01858843665014592, 0.00145751084062268,-0.00014304184442340,
            0.00001588415541880,-0.00000190784959387, 0.00000024195180854,
           -0.00000003193341274, 0.00000000434545063,-0.00000000060578480,
            0.00000000008612098,-0.00000000001244332, 0.00000000000182256,
           -0.00000000000027007, 0.00000000000004042,-0.00000000000000610,
            0.00000000000000093,-0.00000000000000014, 0.00000000000000002];

        if *self == 1.0 {
            pi6
        } else if *self == -1.0 {
            -pi2/12.
        } else {
            let t = -*self;
            let (y, s, a) = if t <= -2.0 {
                let b1 = (-t).ln();
                let b2 = (1.0 + 1.0/t).ln();
                (-1.0/(1.0 + t), 1.0, -pi3 + 0.5*(b1*b1 - b2*b2))
            } else if t < -1.0 {
                let a = (-t).ln();
                (-1.0 - t, -1.0, -pi6 + a*(a + (1.0 + 1.0/t).ln()))
            } else if t <= -0.5 {
                let a = (-t).ln();
                (-(1.0 + t)/t, 1.0, -pi6 + a*(-0.5*a + (1.0 + t).ln()))
            } else if t < 0.0 {
                let b1 = (1.0 + t).ln();
                (-t/(1.0 + t), -1.0, 0.5*b1*b1)
            } else if t <= 1.0 {
                (t, 1.0, 0.)
            } else {
                let b1 = t.ln();
                (1.0/t, -1.0, pi6 + 0.5*b1*b1)
            };

            let h      = y+y - 1.0;
            let alfa   = h+h;
            let mut b0 = 0.0;
            let mut b1 = 0.0;
            let mut b2 = 0.0;
            for c in coeffs.iter().rev() {
                b0 = c + alfa*b1 - b2;
                b2 = b1;
                b1 = b0;
            }
            -(s*(b0 - h*b2) + a)
        }
    }
}

/// Returns the dilogarithm of a complex number of type
/// `Complex<f64>`.
///
/// This function has been translated from the
/// [SPheno](https://spheno.hepforge.org/) package.
///
/// # Example:
/// ```
/// extern crate num;
/// extern crate polylog;
/// use num::complex::Complex;
/// use polylog::Li2;
///
/// fn main() {
///     let z = Complex::new(1.0, 1.0);
///     println!("Li2({}) = {}", z, z.li2());
/// }
/// ```
impl Li2<Complex<f64>> for Complex<f64> {
    fn li2(&self) -> Complex<f64> {
        let pi = 3.1415926535897932384626433832795;

        // bf[1..N-1] are the even Bernoulli numbers / (2 n + 1)!
        // generated by: Table[BernoulliB[2 n]/(2 n + 1)!, {n, 1, 19}]
        let bf = [
            - 1./4.,
              1./36.,
            - 1./36.0e2,
              1./21168.0e1,
            - 1./108864.0e2,
              1./52690176.0e1,
            - 4.0647616451442255268059093862919666745470571274397078e-11,
              8.9216910204564525552179873167527488515142836130490451e-13,
            - 1.9939295860721075687236443477937897056306947496538801e-14,
              4.5189800296199181916504765528555932283968190144666184e-16,
            - 1.0356517612181247014483411542218656665960912381686505e-17,
              2.3952186210261867457402837430009803816789490019429743e-19,
            - 5.5817858743250093362830745056254199055670546676443981e-21,
              1.3091507554183212858123073991865923017498498387833038e-22,
            - 3.0874198024267402932422797648664624315955652561327457e-24,
              7.315975652702203420357905609252148591033401063690875e-26,
            - 1.7408456572340007409890551477597025453408414217542713e-27,
              4.1576356446138997196178996207752266734882541595115639e-29,
            - 9.9621484882846221031940067024558388498548600173944888e-31,
              2.3940344248961653005211679878937495629342791569329158e-32,
        ];

        let rz = self.re;
        let iz = self.im;
        let az = self.norm();

        // special cases
        if iz == 0. {
            if rz <= 1. {
                return Complex::new(rz.li2(), 0.0)
            } else { // rz > 1.
                return Complex::new(rz.li2(), -pi*rz.ln())
            }
        } else if az < std::f64::EPSILON {
            return *self;
        }

        let (cy, cz, jsgn, ipi12) = if rz <= 0.5 {
            if az > 1. {
                (-0.5 * sqr((-self).ln()), -(1. - 1. / self).ln(), -1., -2.)
            } else { // az <= 1.
                (Complex::new(0.,0.), -(1. - self).ln(), 1., 0.)
            }
        } else { // rz > 0.5
            if az <= (2.0*rz).sqrt() {
                let l = -(self).ln();
                (l * (1. - self).ln(), l, -1., 2.)
            } else { // az > sqrt(2*rz)
                (-0.5 * sqr((-self).ln()), -(1. - 1. / self).ln(), -1., -2.)
            }
        };

        // the dilogarithm
        let cz2 = sqr(cz);
        let sum =
            cz +
            cz2 * (bf[0] +
            cz  * (bf[1] +
            cz2 * (bf[2] +
            cz2 * (bf[3] +
            cz2 * (bf[4] +
            cz2 * (bf[5] +
            cz2 * (bf[6] +
            cz2 * (bf[7] +
            cz2 * (bf[8] +
            cz2 * (bf[9] +
            cz2 * (bf[10] +
            cz2 * (bf[11] +
            cz2 * (bf[12] +
            cz2 * (bf[13] +
            cz2 * (bf[14] +
            cz2 * (bf[15] +
            cz2 * (bf[16] +
            cz2 * (bf[17] +
            cz2 * (bf[18] +
            cz2 * (bf[19]))))))))))))))))))));

        jsgn * sum + cy + ipi12 * pi * pi / 12.
    }
}

fn sqr(x: Complex<f64>) -> Complex<f64> { x*x }