1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use super::element::{ElementBuiltin, ElementComponent, ElementContext, ElementFragment};
use super::{
    CommandBuffer, Component, Compositor, Disposable, Effect, EffectLink, Element, EventLoop,
    Instance, LayoutEffect, Manager, Platform,
};
use std::cell::RefCell;
use std::ops::DerefMut;
use std::rc::Rc;

pub struct Render<P>
where
    P: Platform + ?Sized,
{
    renderer: Rc<Renderer<P>>,
    buffer: P::CommandBuffer,
    layout_effects: Vec<LayoutEffect<P>>,
    effects: Vec<Effect<P>>,
}

impl<P> Render<P>
where
    P: Platform + ?Sized,
{
    fn new(renderer: Rc<Renderer<P>>) -> Render<P> {
        let buffer = renderer
            .compositor
            .try_borrow_mut()
            .expect("Couldn't acquire new command buffer from busy compositor.")
            .buffer();

        Render {
            renderer,
            buffer,
            layout_effects: vec![],
            effects: vec![],
        }
    }

    fn rerender_builtin(&mut self, instance: &Rc<Instance<P>>, element: ElementBuiltin<P>) {
        let container = instance.container();
        let builtin = element.builtin;

        self.buffer
            .mutate(&[container], move |containers, environment| {
                builtin.update(containers[0], environment);
            });

        self.rerender_edges(instance, vec![*element.children]);
    }

    fn rerender_component(&mut self, instance: &Rc<Instance<P>>, element: ElementComponent<P>) {
        let (edges, (effects, layout_effects)) = {
            let mut memory = instance.memory_mut();
            let compositor = self
                .renderer
                .compositor
                .try_borrow()
                .expect("Couldn't borrow compositor.");
            let bus = self
                .renderer
                .bus
                .try_borrow()
                .expect("Couldn't borrow bus.");
            let mut manager = Manager::new(
                &*compositor,
                &*bus,
                &mut memory,
                instance.context(),
                *element.children,
                &instance,
            );
            (
                vec![element.component.render(&mut manager)],
                manager.into_effects(),
            )
        };

        self.rerender_edges(instance, edges);

        self.effects.extend(effects);
        self.layout_effects.extend(layout_effects);
    }

    fn rerender_context(&mut self, instance: &Rc<Instance<P>>, element: ElementContext<P>) {
        instance.context().insert_raw(element.value);

        self.rerender_edges(instance, vec![*element.children])
    }

    fn rerender_fragment(&mut self, instance: &Rc<Instance<P>>, element: ElementFragment<P>) {
        self.rerender_edges(instance, element.elements)
    }

    fn rerender_edges(&mut self, instance: &Rc<Instance<P>>, edges: Vec<Element<P>>) {
        let mut topology = instance.topology_mut();
        let topology = topology.deref_mut();

        // Re-rendering looks a bit like mark and sweep. We start by collecting
        // the set of keys of edges.
        let mut keys = topology.keys();

        for element in edges {
            let key = element.key();

            keys.remove(key);

            if let Some(existing) = topology.edge(key) {
                // The edge already exists. We replace its element and issue a
                // re-render.
                existing.topology_mut().deref_mut().update(element);
                self.rerender(existing)
            } else {
                // The edge does not yet exist. We issue a fresh render and store
                // the resulting instance in the topology of this instance.
                let key = key.clone();
                let instance = self.render(
                    Some(instance.clone()),
                    element,
                    instance.container().clone(),
                );
                topology.add_edge(key, instance);
            }
        }

        // Finally, we unmount all instances that correspond to edges that are
        // no longer present.
        for key in keys {
            if let Some(instance) = topology.remove_edge(&key) {
                self.unmount(&instance);
            }
        }
    }

    fn unmount(&mut self, instance: &Rc<Instance<P>>) {
        for edge in instance.topology_mut().edges() {
            self.unmount(&edge);
        }

        match instance.topology_mut().deref_mut().element() {
            Element::Builtin(_) => {
                self.buffer.unmount(instance.container());
            }
            _ => {}
        }
    }

    /// This function is called when re-rendering an existing instance.
    pub fn rerender(&mut self, instance: &Rc<Instance<P>>) {
        let element = instance.topology_mut().element().clone();

        match element {
            Element::Builtin(element) => self.rerender_builtin(instance, element),
            Element::Component(element) => self.rerender_component(instance, element),
            Element::Context(element) => self.rerender_context(instance, element),
            Element::Fragment(element) => self.rerender_fragment(instance, element),
            Element::String(_text) => unimplemented!("Can't render string element directly."),
        }
    }

    /// This function is called when rendering an element into a container for
    /// the first time.
    pub fn render(
        &mut self,
        parent: Option<Rc<Instance<P>>>,
        element: Element<P>,
        in_container: P::ContainerID,
    ) -> Rc<Instance<P>> {
        // We start by figuring out if we need to create a new container for this
        // element or not.
        let container = match &element {
            Element::Builtin(element) => {
                let builtin = element.builtin.clone();
                let container = self.buffer.mount(in_container, move |parent, environment| {
                    builtin.instantiate(parent, environment)
                });

                if let Some(reference) = &element.reference {
                    reference.replace(Some(container));
                }

                container
            }
            _ => in_container,
        };

        let renderer = self.renderer.clone();

        // Then, we create an instance for this element.
        let instance = Rc::new(Instance::new(renderer, parent, element, container));

        // Finally, we pretend that this is simply a re-render.
        self.rerender(&instance);

        instance
    }

    pub fn finish(mut self) {
        self.buffer.layout();

        // Finally, we apply the effects and we're done!
        for effect in self.layout_effects.into_iter() {
            let instance = effect.instance().clone();
            let memory = instance.memory();
            let link = EffectLink::new(&instance, &memory);

            effect.invoke(&link, &mut self.buffer);
        }

        self.buffer.commit();

        let effects = self.effects;

        self.renderer.bus.borrow().queue_retain(async move {
            for effect in effects.into_iter() {
                let instance = effect.instance().clone();
                let memory = instance.memory();
                let link = EffectLink::new(&instance, &memory);

                effect.invoke(&link);
            }
        });
    }
}

pub struct Renderer<P>
where
    P: Platform + ?Sized,
{
    compositor: RefCell<P::Compositor>,
    bus: RefCell<EventLoop>,
}

impl<P> Renderer<P>
where
    P: Platform + ?Sized,
{
    /// This function returns a new reference counted renderer with the given
    /// compositor.
    pub fn new(compositor: P::Compositor, bus: EventLoop) -> Rc<Renderer<P>> {
        Rc::new(Renderer {
            compositor: RefCell::new(compositor),
            bus: RefCell::new(bus),
        })
    }

    pub fn queue_rerender(self: &Rc<Self>, instance: &Rc<Instance<P>>) {
        let renderer = self.clone();
        let instance = instance.clone();

        self.bus.borrow().queue_retain(async move {
            let mut render = Render::new(renderer);
            render.rerender(&instance);
            render.finish();
        });
    }

    pub fn render(
        self: &Rc<Self>,
        element: Element<P>,
        container: P::ContainerID,
    ) -> Rc<Instance<P>> {
        let mut render = Render::new(self.clone());
        let instance = render.render(None, element, container);
        render.finish();

        instance
    }
}

/// This is the entry point of Polyhorn. This function renders an element into
/// the given container. The returned instance must be retained. Once the
/// returned is dropped, all UI will be unmounted.
pub fn render<F, P>(element: F, container: P::Container) -> Disposable
where
    F: FnOnce() -> Element<P> + Send + 'static,
    P: Platform + ?Sized,
{
    P::with_compositor(container, move |container_id, compositor, bus| {
        // We've now switched to the render thread.
        let renderer = Renderer::new(compositor, bus);
        Disposable::new(renderer.render(element(), container_id))
    })
}