1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
//! Contains functionality to create geodesic polyhedra and goldberg polyhedra.
use petgraph::graph::EdgeIndex;
use petgraph::graph::NodeIndex;
use std::collections::HashMap;

use crate::geometry::*;
use crate::platonic_solids::make_icosahedron;
use crate::Polyhedron;

/// Helper struct to create Geodesic polyhedra.
#[derive(Debug)]
struct GeodesicBuilder {
    polyhedron: Polyhedron,
    m: u64,
    n: u64,
}

type EdgeReplacementMap = HashMap<EdgeIndex, NodeIndex>;

impl GeodesicBuilder {
    pub fn subdivide(&mut self) {
        debug_assert_eq!(
            self.polyhedron.assert_consistency(),
            Ok(()),
            "Failed consistency before subdivide"
        );

        let mut faces_new = Vec::new();

        let edge_replacement_map = self.create_vertices_for_edges();

        let faces_old = self.polyhedron.faces.clone();
        for face_old in &faces_old {
            self.subdivide_face(&face_old, &edge_replacement_map, &mut faces_new)
        }
        for face_old in &faces_old {
            self.remove_face_edges(&face_old)
        }

        self.polyhedron.faces = faces_new;

        self.m *= 2;

        debug_assert_eq!(
            self.polyhedron.assert_consistency(),
            Ok(()),
            "Failed consistency after subdivide"
        );
    }

    fn create_vertices_for_edges(&mut self) -> EdgeReplacementMap {
        // The result structure
        let mut edge_to_vertex: EdgeReplacementMap = HashMap::new();

        // Shorthand for our graph. Will receive new nodes.
        let graph = &mut self.polyhedron.graph;

        // Collect edges, as iterating and modifying is bad
        let mut edges: Vec<EdgeIndex> = Vec::new();
        edges.extend(graph.edge_indices());

        // Create a new node in the center of each edge.
        for edge in &edges {
            let vertex_position = {
                let (node_a, node_b) = graph.edge_endpoints(*edge).expect("Illegal edge access");

                let wa = WeightedValue {
                    value: graph.node_weight(node_a).expect("Illegal vertex lookup"),
                    weight: 1.0,
                };
                let wb = WeightedValue {
                    value: graph.node_weight(node_b).expect("Illegal vertex lookup"),
                    weight: 1.0,
                };

                weighted_centroid(&[wa, wb])
            };
            let vertex = graph.add_node(vertex_position);
            edge_to_vertex.insert(*edge, vertex);
        }

        edge_to_vertex
    }

    fn subdivide_face(
        &mut self,
        face: &Face,
        edge_to_vertex: &EdgeReplacementMap,
        new_faces: &mut Vec<Face>,
    ) {
        {
            let graph = &mut self.polyhedron.graph;

            let v0 = face.nodes[0].ix;
            let v1 = face.nodes[1].ix;
            let v2 = face.nodes[2].ix;

            let vertex_pairs = [(v0, v1), (v1, v2), (v2, v0)];

            let mid_nodes = {
                let get_mid_node = |(node_a, node_b): (NodeIndex, NodeIndex)| -> NodeIndex {
                    let edge = graph.find_edge(node_a, node_b);
                    let edge = edge.expect("Illegal node pair");

                    edge_to_vertex[&edge]
                };

                [
                    get_mid_node(vertex_pairs[0]),
                    get_mid_node(vertex_pairs[1]),
                    get_mid_node(vertex_pairs[2]),
                ]
            };

            for (i, (node_a, node_b)) in vertex_pairs.iter().enumerate() {
                let node_mid = mid_nodes[i];

                graph.update_edge(*node_a, node_mid, ());
                graph.update_edge(*node_b, node_mid, ());
            }

            graph.update_edge(mid_nodes[0], mid_nodes[1], ());
            graph.update_edge(mid_nodes[0], mid_nodes[2], ());
            graph.update_edge(mid_nodes[1], mid_nodes[2], ());

            new_faces.push(Face::new_triangle(&[
                VertexHandle::new(mid_nodes[0]),
                VertexHandle::new(mid_nodes[1]),
                VertexHandle::new(mid_nodes[2]),
            ]));

            new_faces.push(Face::new_triangle(&[
                VertexHandle::new(v0),
                VertexHandle::new(mid_nodes[0]),
                VertexHandle::new(mid_nodes[2]),
            ]));
            new_faces.push(Face::new_triangle(&[
                VertexHandle::new(v1),
                VertexHandle::new(mid_nodes[0]),
                VertexHandle::new(mid_nodes[1]),
            ]));
            new_faces.push(Face::new_triangle(&[
                VertexHandle::new(v2),
                VertexHandle::new(mid_nodes[1]),
                VertexHandle::new(mid_nodes[2]),
            ]));
        }
    }

    fn remove_face_edges(&mut self, face: &Face) {
        let graph = &mut self.polyhedron.graph;

        let v0 = face.nodes[0];
        let v1 = face.nodes[1];
        let v2 = face.nodes[2];

        let vertex_pairs = [(v0, v1), (v1, v2), (v2, v0)];

        for (node_a, node_b) in &vertex_pairs {
            let edge = graph.find_edge(node_a.ix, node_b.ix);
            if let Some(edge) = edge {
                graph.remove_edge(edge);
            }
        }
    }

    /// GeodesicToGoldberg returns the goldberg Polyhedron that corresponds to the given geodesic Polyhedron.
    /// This is achieved by replacing all faces with vertices and adding edges between vertices that corresponded to neighbouring faces.
    fn to_goldberg(&self) -> Polyhedron {
        debug_assert!(self.polyhedron.assert_consistency().is_ok());

        let mut graph_new = VertexGraph::default();

        // For each face create a new vertex
        let vertex_map: HashMap<&Face, NodeIndex> = {
            let mut vertex_map = HashMap::new();
            for face in &self.polyhedron.faces {
                let node_pos = face.center(&self.polyhedron.graph);
                let node = graph_new.add_node(node_pos);
                vertex_map.insert(face, node);
            }
            vertex_map
        };

        // Create edges between nodes from adjacent faces.
        for (_, (face_a, face_b)) in get_edge_face_map(&self.polyhedron) {
            let node_a = vertex_map[face_a];
            let node_b = vertex_map[face_b];
            graph_new.add_edge(node_a, node_b, ());
        }

        let faces_new = {
            // Prepare a closure that will help to sort vertices within a face to preserver
            // their adjacency.
            let sort_vertices = |vertices: &mut Vec<NodeIndex>| {
                // Arrange vertices so that neighboring vertices correspond to neighbouring faces
                for i in 0..vertices.len() {
                    let v1 = vertices[i];
                    for j in (i + 1)..vertices.len() {
                        let v2 = vertices[j];
                        // If v2 corresponds to a face next to v1's face, we put it next to v1
                        // Otherwise we keep looking
                        if graph_new.find_edge(v1, v2).is_some() {
                            vertices.swap(j, i + 1);
                            break;
                        }
                    }
                }
            };

            // Turn adjacent vertices into faces
            make_node_face_map(&self.polyhedron)
                .iter()
                .map(|(_, faces)| {
                    let mut vertices: Vec<NodeIndex> =
                        faces.iter().map(|f| vertex_map[f]).collect();

                    // Arrange vertices so that neighboring vertices correspond to neighbouring faces
                    sort_vertices(&mut vertices);

                    let f = Face::from_node_index(&vertices);

                    {
                        let contains_edge = |(v1, v2): (VertexHandle, VertexHandle)| {
                            graph_new.find_edge_undirected(v1.ix, v2.ix).is_some()
                        };

                        debug_assert!(
                            f.edges().into_iter().all(contains_edge),
                            "Created face {:?} with edges that are not in graph {:?}",
                            f,
                            graph_new
                        );
                    };
                    f
                })
                .collect()
        };
        let result = Polyhedron {
            graph: graph_new,
            faces: faces_new,
        };
        debug_assert_eq!(
            result.assert_consistency(),
            Ok(()),
            "Failed consistency after in goldberg conversion"
        );
        result
    }
}

/// Return a HashMap of all edges to their adjacent faces.
fn get_edge_face_map<'a>(polyhedron: &'a Polyhedron) -> HashMap<EdgeIndex, (&'a Face, &'a Face)> {
    let mut map: HashMap<EdgeIndex, Vec<&Face>> = HashMap::new();
    {
        // We know we will get two faces overall, but first we need to collect the faces in
        // a vector. This function pushed the given face into the vector corresponding
        // to the given edge (or initialises it, if there hasn't been one yet).
        let mut insert_face = |key: EdgeIndex, value: &'a Face| {
            let vec = map.entry(key).or_insert_with(Vec::new);
            // We also need to check the face has not been added yet
            if !vec.contains(&value) {
                vec.push(value);
            }
        };

        // For each face...
        for face in &polyhedron.faces {
            // ...we look at each edge...
            for (node_a, node_b) in face.edges() {
                let edge = polyhedron.graph.find_edge(node_a.ix, node_b.ix);
                let edge = edge.expect("Illegal edge access.");
                // ...and add the face to the corresponding edge vector.
                insert_face(edge, face)
            }
        }
    }
    // We discard the vectors and just extract the two faces
    map.iter()
        .map(|(k, v)| {
            assert_eq!(
                v.len(),
                2,
                "Found edge with {} adjacent faces. Expected 2.",
                v.len()
            );
            (*k, (v[0], v[1]))
        })
        .collect()
}

/// Return a HashMap of all nodes to their adjacent faces.
fn make_node_face_map<'a>(polyhedron: &'a Polyhedron) -> HashMap<NodeIndex, Vec<&'a Face>> {
    let mut map: HashMap<NodeIndex, Vec<&Face>> = HashMap::new();
    {
        // Push the given value to the vector for the given node.
        // In case there is no vector yet, create it.
        let mut insert = |key: NodeIndex, value: &'a Face| {
            let vec = map.entry(key).or_insert_with(Vec::new);
            vec.push(value);
        };

        // For each face go through all its nodes and add the face to the vector.
        for face in &polyhedron.faces {
            for node in face.nodes() {
                insert(node.ix, face);
            }
        }
    }
    map
}

/// Create a icosahedral geodesic with the given numbers of subdivisions.
/// For more information see https://en.wikipedia.org/wiki/Geodesic_polyhedron
pub fn build_icosahedral_geodesic(subdivisions: u64) -> Polyhedron {
    let mut geo = GeodesicBuilder {
        polyhedron: make_icosahedron(),
        m: 1,
        n: 0,
    };
    for _ in 0..subdivisions {
        geo.subdivide();
    }
    geo.polyhedron
}

/// Create an icosahedral Goldberg polyhedron with the given numbers of subdivisions.
/// For more information see https://en.wikipedia.org/wiki/Goldberg_polyhedron
pub fn build_icosahedral_goldberg(subdivisions: u64) -> Polyhedron {
    let mut geo = GeodesicBuilder {
        polyhedron: make_icosahedron(),
        m: 1,
        n: 0,
    };
    for _ in 0..subdivisions {
        geo.subdivide();
    }
    geo.to_goldberg()
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::topology::Tiling;
    use std::time::Instant;

    fn check_subdivision(m: u64) {
        let gg = build_icosahedral_geodesic(m);

        let n = 0_u64;
        let m = 2_u64.pow(m as u32);
        let t = n * m + n * n + m * m;

        let face_count = gg.faces.len() as u64;

        if face_count != (t * 20) {
            panic!("Number of faces is {} instead of {}.", face_count, 20 * t)
        }

        let edge_count = gg.graph.edge_count() as u64;
        if edge_count != (t * 30) {
            panic!("Number of edges is {} instead of {}.", edge_count, 30 * t)
        }

        let vertex_count = gg.graph.node_count() as u64;
        if vertex_count != (t * 10 + 2) {
            panic!(
                "Number of vertices is {} instead of {}.",
                vertex_count,
                10 * t + 3
            )
        }
    }

    #[test]
    fn test_subdivision() {
        let start = Instant::now();
        for n in 0..5 {
            check_subdivision(n);
        }
        let end = Instant::now();
        println!("{} seconds for whatever you did.", (end - start).as_secs());
    }

    #[test]
    fn test_goldberg_polyhedron() {
        for i in 0..5 {
            let start = Instant::now();
            let igp = build_icosahedral_goldberg(i);
            let end = Instant::now();
            println!(
                "{} seconds for creating a {} subdivision Goldberg Polyhedron.",
                (end - start).as_secs(),
                i
            );

            let n = 0;
            let m = 2_i32.pow(i as u32);
            let t = (m * n + m * m + n * n) as usize;

            println!("with {} nodes", igp.graph.node_count());
            assert_eq!(igp.faces.len(), 10 * t + 2);
            assert_eq!(igp.graph.node_count(), 20 * t);
            assert_eq!(igp.graph.edge_count(), 30 * t);
        }
    }

    #[test]
    fn test_goldberg_edge_validity() {
        for i in 0..5 {
            let igp = build_icosahedral_goldberg(i);

            for face in igp.faces.iter() {
                for (v1, v2) in face.edges() {
                    assert_ne!(
                        None,
                        igp.graph.find_edge(v1.ix, v2.ix),
                        "Found edge in face ({:?}, {:?}) that is missing from graph {:?}",
                        v1,
                        v2,
                        igp.graph
                    )
                }
            }
        }
    }

    #[test]
    fn test_geodesic_consistency() {
        for i in 0..5 {
            println!("Checking subdivision {}.", i);
            let ic = build_icosahedral_geodesic(i);

            for face in ic.faces() {
                for (v1, v2) in face.edges() {
                    assert_ne!(
                        ic.graph.find_edge_undirected(v1.ix, v2.ix),
                        None,
                        "Found invalid edge: ({:?}, {:?}) in face",
                        v1,
                        v2
                    );
                }
            }
        }
    }

    #[test]
    fn test_geodesic_map_consistency() {
        for i in 0..5 {
            let ic = build_icosahedral_geodesic(i);
            let edge_face_map = get_edge_face_map(&ic);
            let node_face_map = make_node_face_map(&ic);

            // If a face is edge adjacent, it should also be node adjacent to both nodes in the edge
            for (edge, edge_faces) in edge_face_map {
                let (v1, v2) = ic.graph.edge_endpoints(edge).unwrap();
                let faces_v1 = &node_face_map[&v1];
                assert!(faces_v1.contains(&edge_faces.0));
                assert!(faces_v1.contains(&edge_faces.1));

                let faces_v2 = &node_face_map[&v2];
                assert!(faces_v2.contains(&edge_faces.0));
                assert!(faces_v2.contains(&edge_faces.1));
            }
        }
    }

    #[test]
    fn test_get_node_face_map() {
        for i in 0..5 {
            println!("Checking subdivision {}.", i);
            let ic = build_icosahedral_geodesic(i);

            let nfm = make_node_face_map(&ic);
            for (node, faces) in nfm {
                assert!(
                    faces.len() == 5 || faces.len() == 6,
                    "Expected there to be 5 or 6 adjacent faces adjacent to {:?}, but found {:?}",
                    node,
                    faces.len()
                );

                assert!(ic.graph.contains_node(node));
                for face in &faces {
                    for (v1, v2) in face.edges() {
                        assert!(ic.graph.find_edge(v1.ix, v2.ix).is_some())
                    }
                }
            }
        }
    }

    #[test]
    fn test_goldberg_tiling() {
        for i in 0..5 {
            println!("Checking subdivision {}.", i);
            let igp = build_icosahedral_goldberg(i);

            for node in igp.iter() {
                for (boundary, neighbour) in igp.adjacent(node) {
                    assert_ne!(
                        neighbour, None,
                        "Found unconnected edge: ({:?}, {:?})",
                        boundary, neighbour
                    );
                }
            }
        }
    }

    #[test]
    fn test_goldberg_polyhedron_node_degrees() {
        for i in 0..5 {
            let igp = build_icosahedral_goldberg(i);
            let graph: VertexGraph = igp.into();
            graph.node_indices().for_each(|n_ix| {
                let nc = graph.neighbors(n_ix).count();
                assert_eq!(nc, 3, "Found node with {} neighbors. Expected 3.", nc);
            })
        }
    }
}