1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
#![deny(missing_docs)]

//! # Poi
//! a pragmatic point-free theorem prover assistant
//!
//! [Standard Library](./assets/std.md)
//!
//! ```text
//! === Poi Reduce 0.18 ===
//! Type `help` for more information.
//! > and[not]
//! and[not]
//! or
//! ∵ and[not] => or
//! <=>  not · nor
//!      ∵ not · nor <=> or
//! ∴ or
//! ```
//!
//! To run Poi Reduce from your Terminal, type:
//!
//! ```text
//! cargo install --example poireduce poi
//! ```
//!
//! Then, to run:
//!
//! ```text
//! poireduce
//! ```
//!
//! ### Example: Length of concatenated lists
//!
//! Poi lets you specify a goal and automatically prove it.
//!
//! For example, when computing the length of two concatenated lists,
//! there is a faster way, which is to compute the length of each list and add them together:
//!
//! ```text
//! > goal len(a)+len(b)
//! new goal: (len(a) + len(b))
//! > len(a++b)
//! len((a ++ b))
//! depth: 1 <=>  (len · concat)(a)(b)
//!      ∵ (f · g)(a)(b) <=> f(g(a)(b))
//! .
//! (len · concat)(a)(b)
//! (concat[len] · (len · fst, len · snd))(a)(b)
//! ∵ len · concat => concat[len] · (len · fst, len · snd)
//! (add · (len · fst, len · snd))(a)(b)
//! ∵ concat[len] => add
//! depth: 0 <=>  ((len · fst)(a)(b) + (len · snd)(a)(b))
//!      ∵ (f · (g0, g1))(a)(b) <=> f(g0(a)(b))(g1(a)(b))
//! ((len · fst)(a)(b) + (len · snd)(a)(b))
//! (len(a) + (len · snd)(a)(b))
//! ∵ (f · fst)(a)(_) => f(a)
//! (len(a) + len(b))
//! ∵ (f · snd)(_)(a) => f(a)
//! ∴ (len(a) + len(b))
//! Q.E.D.
//! ```
//!
//! The notation `concat[len]` is a "normal path",
//! which lets you transform into a more efficient program.
//! Normal paths are composable and point-free,
//! unlike their equational representations.
//!
//! ### Example: Levenshtein proof search
//!
//! For deep automated theorem proving, Poi uses Levenshtein distance heuristic.
//! This is simply the minimum single-character edit distance in text representation.
//!
//! Try the following:
//!
//! ```text
//! > goal a + b + c + d
//! > d + c + b + a
//! > auto lev
//! ```
//!
//! The command `auto lev` tells Poi to automatically pick the equivalence with
//! smallest Levenshtein distance found in any sub-proof.
//!
//! ### Introduction to Poi and Path Semantics
//!
//! In "point-free" or "tacit" programming, functions do not identify the arguments
//! (or "points") on which they operate. See [Wikipedia article](https://en.wikipedia.org/wiki/Tacit_programming).
//!
//! Poi is an implementation of a small subset of [Path Semantics](https://github.com/advancedresearch/path_semantics).
//! In order to explain how Poi works, one needs to explain a bit about Path Semantics.
//!
//! [Path Semantics](https://github.com/advancedresearch/path_semantics) is an extremely expressive language for mathematical programming,
//! which has a "path-space" in addition to normal computation.
//! If normal programming is 2D, then Path Semantics is 3D.
//! Path Semantics is often used in combination with [Category Theory](https://en.wikipedia.org/wiki/Category_theory), [Logic](https://en.wikipedia.org/wiki/Logic), etc.
//!
//! A "path" (or "normal path") is a way of navigating between functions, for example:
//!
//! ```text
//! and[not] <=> or
//! ```
//!
//! Translated into words, this sentence means:
//!
//! ```text
//! If you flip the input and output bits of an `and` function,
//! then you can predict the output directly from the input bits
//! using the function `or`.
//! ```
//!
//! In normal programming, there is no way to express this idea directly,
//! but you can represent the logical relationship as an equation:
//!
//! ```text
//! not(and(a, b)) = or(not(a), not(b))
//! ```
//!
//! This is known as one of [De Morgan's laws](https://en.wikipedia.org/wiki/De_Morgan's_laws).
//!
//! When represented as a commutative diagram, one can visualize the dimensions:
//!
//! ```text
//!          not x not
//!       o ---------> o           o -------> path-space
//!       |            |           |  x
//!   and |            | or        |     x
//!       V            V           |   x
//!       o ---------> o           V        x - Sets are points
//!            not            computation
//! ```
//!
//! Computation and paths is like complex numbers
//! where the "real" part is computation and
//! the "imaginary" part is the path.
//!
//! This is written in asymmetric path notation:
//!
//! ```text
//! and[not x not -> not] <=> or
//! ```
//!
//! In symmetric path notation:
//!
//! ```text
//! and[not] <=> or
//! ```
//!
//! Both computation and path-space are directional,
//! meaning that one can not always find the inverse.
//! Composition in path-space is just function composition:
//!
//! ```text
//! f[g][h] <=> f[h . g]
//! ```
//!
//! If one imagines `computation = 2D`, then `computation + path-space = 3D`.
//!
//! Path Semantics can be thought of as "point-free style" sub-set of equations.
//! This sub-set of equations is particularly helpful in programming.
//!
//! ### The Problem of Complexity
//!
//! Efficient mathematical knowledge useful for programming depends on knowing
//! the identity of functions. This means that the more knowledge you want to build,
//! the more functions you need to name and refer to symbolically.
//!
//! This means that mathematical theories using a "birds-eye view" are not as
//! useful to solve specific problems, except as a guide to find the solution.
//! The more general and expressive a theory is, the harder it is to do proof search.
//!
//! As a consequence, theorem proving along both `computation + path-space` is
//! much harder than just theorem proving for `computation`.
//!
//! For example, [Type Theory](https://en.wikipedia.org/wiki/Type_theory) is useful
//! to check that programs are correct, but for higher categories, it becomes
//! increasingly hard to ground the semantics while staying efficient and usable.
//!
//! [Path Semantics](https://github.com/advancedresearch/path_semantics) uses a
//! different approach, which is based on symbols.
//! When a symbol is created, the theory "commits" to preserving the "paths"
//! from the symbol, which is known in [Homotopy Type Theory](https://homotopytypetheory.org/) to correspond to "proofs".
//! Since the symbols themselves encode this relationship to proofs,
//! it means that proofs can be arbitrarily complex without affecting complexity.
//!
//! This is different from a pure axiomatic system.
//! In a pure axiomatic system, the symbols do not have meaning except
//! the relationship to each other (the axioms).
//! As a result, you get non-standard interpretations of the Peano axioms.
//! In Path Semantics, if you say "the natural numbers", you *mean* the natural numbers, not the natural numbers as described by the Peano axioms.
//! The symbol "the natural numbers" *is the proof* of what you mean,
//! using the background of path semantical knowledge to interpret it.
//! This is what the "semantics" in Path Semantics means.
//!
//! It is possible to express ideas in Path Semantics which are believed to be true,
//! yet can not be proven to be true in any formal language. Someday, a formal
//! language might be invented to prove the sentence true, but programmers do not
//! wait for this to happen. Instead, they default to pragmatic strategies, such as
//! testing extensively.
//! For example, [Goldbach's conjecture](https://en.wikipedia.org/wiki/Goldbach%27s_conjecture)
//! has been tested up to some limit, so it holds for all natural numbers below that limit.
//! A pragmatic strategy is what you do when you can not idealize the problem away.
//!
//! Poi uses a pragmatic approach in its design because a lot of proofs in
//! Path Semantics requires no or little type checking in the "point-free style".
//!
//! ### Design of Poi
//!
//! Poi is designed to be used as a Rust library.
//!
//! It means that anybody can create their own tools on top of Poi,
//! without needing a lot of dependencies.
//!
//! Poi uses primarily rewriting-rules for theorem proving.
//! This means that the core design is "stupid" and will do dumb things like running
//! in infinite loops when given the wrong rules.
//!
//! However, this design makes also Poi very flexible, because it can pattern match
//! in any way, independent of computational direction.
//! It is relatively easy to define such rules in Rust code.
//!
//! #### Syntax
//!
//! Poi uses [Piston-Meta](https://github.com/pistondevelopers/meta) to describe its syntax. Piston-Meta is a meta parsing language for human readable text documents.
//! It makes it possible to easily make changes to Poi's grammar,
//! and also preserve backward compatibility.
//!
//! Since Piston-Meta can describe its own grammar rules, it means that future
//! versions of Piston-Meta can parse grammars of old versions of Poi.
//! The old documents can then be transformed into new versions of Poi using synthesis.
//!
//! #### Core Design
//!
//! At the core of Poi, there is the `Expr` structure:
//!
//! ```rust(ignore)
//! /// Function expression.
//! #[derive(Clone, PartialEq, Debug)]
//! pub enum Expr {
//!     /// A symbol that is used together with symbolic knowledge.
//!     Sym(Symbol),
//!     /// Some function that returns a value, ignoring the argument.
//!     ///
//!     /// This can also be used to store values, since zero arguments is a value.
//!     Ret(Value),
//!     /// A binary operation on functions.
//!     Op(Op, Box<Expr>, Box<Expr>),
//!     /// A tuple for more than one argument.
//!     Tup(Vec<Expr>),
//!     /// A list.
//!     List(Vec<Expr>),
//! }
//! ```
//!
//! The simplicity of the `Expr` structure is important and heavily based on
//! advanced path semantical knowledge.
//!
//! A symbol contains every domain-specific symbol and "avatar extensions"
//! of symbols. An "avatar extension" is a technique of integrating information
//! processing from building blocks that have no relations for introspection.
//! This means, that even some variants of `Symbol` are not symbols in a direct sense,
//! they are put there because they "integrate information" of symbols.
//! For example, a variable is classified as a `1-avatar` since it "integrates information" of a single symbol or expression. "Avatar extensions" occur
//! frequently in Path Semantics for very sophisticated mathematical relations, but usually do not need to be represented explicitly.
//! Instead, they are used as a "guide" to design.
//! See the paper [Avatar Graphs](https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/avatar-graphs.pdf) for more information.
//!
//! The `Ret` variant comes from the notation used in [Higher Order Operator Overloading](https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#higher-order-operator-overloading). Instead of describing a value as value,
//! it is thought of as a function of some unknown input type, which returns a known value. For example, if a function returns `2` for all inputs, this is written `\2`.
//! This means that point-free transformations on functions sometimes can compute stuff, without explicitly needing to reference the concrete value directly.
//! See paper [Higher Order Operator Overloading and Existential Path Equations](https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/higher-order-operator-overloading-and-existential-path-equations.pdf) for more information.
//!
//! The `Op` variant generalizes binary operators on functions,
//! such as `Composition`, `Path` (normal path),
//! `Apply` (call a function) and `Constrain` (partial functions).
//!
//! The `Tup` variant represents tuples of expressions, where a singleton (a tuple of one element) is
//! "lifted up" one level. This is used e.g. to transition from `and[not x not -> not]` to `and[not]` without having to write rules for asymmetric cases.
//!
//! The `List` variant represents lists of expressions, e.g. `[1, 2, 3]`.
//! This differs from `Tup` by the property that singletons are not "lifted up".
//!
//! #### Representing Knowledge
//!
//! In higher dimensions of functional programming, the definition of "normalization"
//! depends on the domain specific use of a theory. Intuitively, since there are
//! more directions, what counts as progression toward an answer is somewhat
//! chosen arbitrarily. Therefore, the subjectivity of this choice must be
//! reflected in the representation of knowledge.
//!
//! Poi's representation of knowledge is designed for multi-purposes.
//! Unlike in normal programming, you do not want to always do e.g. evaluation.
//! Instead, you design different tools for different purposes, using the same
//! knowledge.
//!
//! The `Knowledge` struct represents mathematical knowledge in form of rules:
//!
//! ```rust(ignore)
//! /// Represents knowledge about symbols.
//! pub enum Knowledge {
//!     /// A symbol has some definition.
//!     Def(Symbol, Expr),
//!     /// A reduction from a more complex expression into another by normalization.
//!     Red(Expr, Expr),
//!     /// Two expressions that are equivalent but neither normalizes the other.
//!     Eqv(Expr, Expr),
//!     /// Two expressions that are equivalent but evaluates from left to right.
//!     EqvEval(Expr, Expr),
//! }
//! ```
//!
//! The `Def` variant represents a definition.
//! A definition is inlined when evaluating an expression.
//!
//! The `Red` variant represents what counts as "normalization" in a domain specific theory.
//! It can use computation in the sense of normal evaluation, or use path-space.
//! This rule is directional, which means it pattern matches on the first expression
//! and binds variables, which are synthesized using the second expression.
//!
//! The `Eqv` variant represents choices that one can make when traveling along a path.
//! Going in one direction might be as good as another.
//! This is used when it is not clear which direction one should go.
//! This rule is bi-directional, which means one can treat it as a reduction both ways.
//!
//! The `EqvEval` variant is similar to `Eqv`, but when evaluating an expression, it
//! reduces from left to right. This is used on e.g. `sin(τ / 8)`.
//! You usually want the readability of `sin(τ / 8)` when doing theorem proving.
//! For example, in Poi Reduce, the value of `sin(τ / 8)` is presented as a choice (equivalence).
//! When evaluating an expression it is desirable to just replace it with the computed value.
//!
//! ### What Poi is not
//!
//! Some people hoped that Poi might be used to solve problems
//! where dependent types are used, but in a more convenient way.
//!
//! Although Poi uses ideas from dependent types, it is not suitable for other applications
//! of dependent types, e.g. verifcation of programs by applying it to some immediate representation of machine code.
//!
//! Normal paths might be used for such applications in the future,
//! but this might require a different architecture.
//!
//! This implementation is designed for algebraic problems:
//!
//! - The object model is restricted to dynamical types
//! - Reductions are balanced with equivalences
//!
//! This means that not everything is provable,
//! because this makes automated theorem proving harder,
//! something that is required for the necessary depth of algebraic solving.

use std::sync::Arc;

use self::Expr::*;
use self::Op::*;
use self::Value::*;
use self::Knowledge::*;
use self::Symbol::*;

pub use val::*;
pub use expr::*;
pub use op::Op;
pub use sym::*;
pub use standard_library::*;
pub use parsing::*;
pub use knowledge::*;

mod val;
mod expr;
mod op;
mod sym;
mod knowledge;
mod standard_library;
mod parsing;
mod arity;
mod matrix;

/// Used to global import enum variants.
pub mod prelude {
    pub use super::*;
    pub use super::Expr::*;
    pub use super::Op::*;
    pub use super::Value::*;
    pub use super::Knowledge::*;
    pub use super::Symbol::*;
}

impl Into<Expr> for bool {
    fn into(self) -> Expr {Ret(Bool(self))}
}

impl Into<Expr> for f64 {
    fn into(self) -> Expr {Ret(F64(self))}
}

impl<T, U> Into<Expr> for (T, U)
    where T: Into<Expr>, U: Into<Expr>
{
    fn into(self) -> Expr {Tup(vec![self.0.into(), self.1.into()])}
}

impl<T0, T1, T2> Into<Expr> for (T0, T1, T2)
    where T0: Into<Expr>, T1: Into<Expr>, T2: Into<Expr>
{
    fn into(self) -> Expr {Tup(vec![self.0.into(), self.1.into(), self.2.into()])}
}

impl Expr {
    /// Returns available equivalences of the expression, using a knowledge base.
    pub fn equivalences(&self, knowledge: &[Knowledge]) -> Vec<(Expr, usize)> {
        let mut ctx = Context {vars: vec![]};
        let mut res = vec![];
        for i in 0..knowledge.len() {
            if let Eqv(a, b) | EqvEval(a, b) = &knowledge[i] {
                if ctx.bind(a, self) {
                    let expr = match ctx.substitute(b) {
                        Ok(expr) => expr,
                        Err(_) => {
                            // Silence errors since the equivalence might not be relevant.
                            // This should probably be handled better.
                            ctx.vars.clear();
                            continue;
                        }
                    };
                    res.push((expr, i));
                    ctx.vars.clear();
                } else if ctx.bind(b, self) {
                    let expr = match ctx.substitute(a) {
                        Ok(expr) => expr,
                        Err(_) => {
                            // Silence errors since not all variables can be bound.
                            // This should probably be handled better.
                            ctx.vars.clear();
                            continue;
                        }
                    };
                    res.push((expr, i));
                    ctx.vars.clear();
                }
            }
        }

        match self {
            Sym(_) | Ret(_) => {}
            Op(op, a, b) => {
                for (ea, i) in a.equivalences(knowledge).into_iter() {
                    res.push((Op(*op, Box::new(ea), b.clone()), i));
                }
                for (eb, i) in b.equivalences(knowledge).into_iter() {
                    res.push((Op(*op, a.clone(), Box::new(eb)), i));
                }
            }
            Tup(items) | List(items) => {
                for i in 0..items.len() {
                    for (expr, j) in items[i].equivalences(knowledge).into_iter() {
                        let mut new_items: Vec<Expr> = items[0..i].into();
                        new_items.push(expr);
                        new_items.extend(items[i+1..].iter().map(|n| n.clone()));
                        if let Tup(_) = self {
                            res.push((Tup(new_items), j));
                        } else if let List(_) = self {
                            res.push((List(new_items), j));
                        }
                    }
                }
            }
        }

        res
    }

    /// Returns `true` if expressions contains NaN (not a number).
    pub fn contains_nan(&self) -> bool {
        match self {
            Sym(_) => false,
            Ret(F64(v)) => v.is_nan(),
            Ret(_) => false,
            Op(_, a, b) => a.contains_nan() || b.contains_nan(),
            Tup(items) | List(items) => items.iter().any(|n| n.contains_nan()),
        }
    }

    /// Evaluate an expression using a knowledge base.
    ///
    /// This combines reductions and inlining of all symbols.
    pub fn eval(&self, knowledge: &[Knowledge]) -> Result<Expr, Error> {
        let mut me = self.clone();
        while !me.contains_nan() {
            let expr = me.reduce_eval_all(knowledge, true).inline_all(knowledge)?;
            if expr == me {break};
            me = expr;
        }
        Ok(me)
    }

    /// Reduces an expression using a knowledge base, until it can not be reduces further.
    pub fn reduce_all(&self, knowledge: &[Knowledge]) -> Expr {
        self.reduce_eval_all(knowledge, false)
    }

    /// Reduces an expression using a knowledge base, until it can not be reduces further.
    pub fn reduce_eval_all(&self, knowledge: &[Knowledge], eval: bool) -> Expr {
        let mut me = self.clone();
        while let Ok((expr, _)) = me.reduce_eval(knowledge, eval) {me = expr}
        me
    }

    /// Reduces expression one step using a knowledge base.
    pub fn reduce(&self, knowledge: &[Knowledge]) -> Result<(Expr, usize), Error> {
        self.reduce_eval(knowledge, false)
    }

    /// Reduces expression one step using a knowledge base.
    ///
    /// When `eval` is set to `true`, the `EqvEval` variants are reduced.
    pub fn reduce_eval(&self, knowledge: &[Knowledge], eval: bool) -> Result<(Expr, usize), Error> {
        let mut ctx = Context {vars: vec![]};
        let mut me: Result<(Expr, usize), Error> = Err(Error::NoReductionRule);
        for i in 0..knowledge.len() {
            if eval {
                if let Red(a, b) | EqvEval(a, b) = &knowledge[i] {
                    if ctx.bind(a, self) {
                        me = match ctx.substitute(b) {
                            Ok(expr) => Ok((expr, i)),
                            Err(err) => Err(err),
                        };
                        break;
                    }
                }
            } else {
                if let Red(a, b) = &knowledge[i] {
                    if ctx.bind(a, self) {
                        me = match ctx.substitute(b) {
                            Ok(expr) => Ok((expr, i)),
                            Err(err) => Err(err),
                        };
                        break;
                    }
                }
            }
        }

        match self {
            Op(op, a, b) => {
                // Do not reduce sub-expressions containing type judgements in the parent,
                // to avoid infinite expansion in rules introducing type judgements.
                //
                // Type judgements might still be used in pattern matching and binding of variables.
                //
                // For example, `a : T => ...` is still valid.
                if let Type = op {
                    // Make an exception for lists, in order to evaluate items of the list.
                    if let List(_) = **a {} else {return me}
                }

                if let Ok((a, i)) = a.reduce_eval(knowledge, eval) {
                    // Prefer the reduction that matches the first rule.
                    if let Ok((expr, j)) = me {if j < i {return Ok((expr, j))}};
                    return Ok((Op(*op, Box::new(a), b.clone()), i));
                }
                if let Ok((b, i)) = b.reduce_eval(knowledge, eval) {
                    // Prefer the reduction that matches the first rule.
                    if let Ok((expr, j)) = me {if j < i {return Ok((expr, j))}};
                    return Ok((Op(*op, a.clone(), Box::new(b)), i));
                }
            }
            Tup(a) | List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    if let Ok((n, j)) = a[i].reduce_eval(knowledge, eval) {
                        // Prefer the reduction that matches the first rule.
                        if let Ok((expr, k)) = me {if k < j {return Ok((expr, k))}};
                        res.push(n);
                        res.extend(a[i+1..].iter().map(|n| n.clone()));
                        if let Tup(_) = self {
                            return Ok((Tup(res), j));
                        } else if let List(_) = self {
                            return Ok((List(res), j));
                        } else {
                            unreachable!();
                        }
                    } else {
                        res.push(a[i].clone());
                    }
                }
            }
            _ => {}
        }

        me
    }

    /// Inlines all symbols using a knowledge base.
    ///
    /// Ignores missing definitions in domain constraints.
    pub fn inline_all(&self, knowledge: &[Knowledge]) -> Result<Expr, Error> {
        match self {
            Sym(a) => {
                for i in 0..knowledge.len() {
                    if let Def(b, c) = &knowledge[i] {
                        if b == a {
                            return Ok(c.clone());
                        }
                    }
                }
                Err(Error::NoDefinition)
            }
            Ret(_) => Ok(self.clone()),
            Op(op, a, b) => {
                if let Constrain = op {
                    let a = a.inline_all(knowledge)?;
                    match b.inline_all(knowledge) {
                        Err(Error::NoDefinition) => Ok(a),
                        Err(err) => Err(err),
                        Ok(b) => Ok(constr(a, b)),
                    }
                } else {
                    match (a.inline_all(knowledge), b.inline_all(knowledge)) {
                        (Ok(a), Ok(b)) => Ok(Op(
                            *op,
                            Box::new(a),
                            Box::new(b)
                        )),
                        (Ok(a), Err(_)) => Ok(Op(
                            *op,
                            Box::new(a),
                            b.clone()
                        )),
                        (Err(_), Ok(b)) => Ok(Op(
                            *op,
                            a.clone(),
                            Box::new(b)
                        )),
                        (err, _) => err,
                    }
                }
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline_all(knowledge)?);
                }
                Ok(Tup(res))
            }
            List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline_all(knowledge)?);
                }
                Ok(List(res))
            }
        }
    }

    /// Inline a symbol using a knowledge base.
    pub fn inline(&self, sym: &Symbol, knowledge: &[Knowledge]) -> Result<Expr, Error> {
        match self {
            Sym(a) if a == sym => {
                for i in 0..knowledge.len() {
                    if let Def(b, c) = &knowledge[i] {
                        if b == a {
                            return Ok(c.clone());
                        }
                    }
                }
                Err(Error::NoDefinition)
            }
            Sym(_) | Ret(_) => Ok(self.clone()),
            Op(op, a, b) => {
                Ok(Op(
                    *op,
                    Box::new(a.inline(sym, knowledge)?),
                    Box::new(b.inline(sym, knowledge)?)
                ))
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline(sym, knowledge)?);
                }
                Ok(Tup(res))
            }
            List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(a[i].inline(sym, knowledge)?);
                }
                Ok(List(res))
            }
        }
    }

    /// Returns `true` if a function has any constraints, `false` if there are none constraints.
    ///
    /// This is used in the following rules in the standard library, using `no_constr`:
    ///
    /// - `∀(f:!{}) => \true`
    /// - `f:!{}([x..]) => f{(: vec)}(x)`
    /// - `f:!{}(a)(a) <=> f{eq}(a)(a)`
    ///
    /// For example, to detect whether it is safe to insert a new constraint.
    /// This check is important because a constraint refers to one or more arguments.
    /// By introducing a new constraint that refers incorrectly to its argument,
    /// it leads to unsoundness.
    ///
    /// A function has none constraints if it is applied enough times to cover existing constraints.
    /// This means the total arity of constraints is less or equal than the total arity of arguments.
    ///
    /// To avoid unsoundness under uncertain edge cases, this function should return `true`.
    /// This is because the `no_constr` check fails to pattern match, which is safe,
    /// since inactive rules do not introduce unsoundness.
    ///
    /// Unfinished: This function requires analysis and unit testing.
    pub fn has_constraint(&self, arity_args: usize) -> bool {
        match self {
            Op(Constrain, f, a) => {
                if let Some(arity) = a.arity() {
                    if arity > arity_args {true}
                    else {f.has_constraint(arity_args - arity)}
                } else {
                    true
                }
            }
            Op(Compose, a, b) => b.has_constraint(arity_args) || a.has_constraint(0),
            Op(Apply, f, _) => f.has_constraint(arity_args + 1),
            Sym(_) => false,
            Ret(_) => false,
            _ => true
        }
    }

    /// Returns `true` if expression has type judgement.
    pub fn has_type_judgement(&self) -> bool {
        match self {
            Op(Type, _, _) => true,
            _ => false
        }
    }
}

/// Stores variables bound by context.
pub struct Context {
    /// Contains the variables in the context.
    pub vars: Vec<(Arc<String>, Expr)>,
}

impl Context {
    /// Binds patterns of a `name` expression to a `value` expression.
    pub fn bind(&mut self, name: &Expr, value: &Expr) -> bool {
        match (name, value) {
            (Sym(NoConstrVar(_)), v) if v.has_constraint(0) => {
                self.vars.clear();
                false
            }
            (Sym(Var(_)), Tup(_)) | (Sym(NoConstrVar(_)), Tup(_)) => {
                self.vars.clear();
                false
            }
            // Do not pattern match variables to type judgements,
            // since the type judgements might imply exceptions to default rules.
            (Sym(Var(_)), v) if v.has_type_judgement() => {
                self.vars.clear();
                false
            }
            (Sym(Var(name)), x) | (Sym(NoConstrVar(name)), x) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == x {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), x.clone()));
                true
            }
            (Sym(ArityVar(name, n)), Sym(x)) if x.arity() == Some(*n) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if let Sym(y) = &self.vars[i].1 {
                            if y == x {
                                break
                            } else {
                                self.vars.clear();
                                return false;
                            }
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), Sym(x.clone())));
                true
            }
            (Sym(NotRetVar(_)), Ret(_)) | (Sym(NotRetVar(_)), Tup(_)) => {
                self.vars.clear();
                false
            }
            (Sym(NotRetVar(name)), _) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(RetVar(name)), Ret(_)) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(RetIntVar(name)), Ret(F64(x))) if x % 1.0 == 0.0 => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(RetPosVar(name)), Ret(F64(x))) if *x >= 0.0 => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(RetStrictPosVar(name)), Ret(F64(x))) if *x > 0.0 => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(RetNegVar(name)), Ret(F64(x))) if *x < 0.0 => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        if &self.vars[i].1 == value {
                            break
                        } else {
                            self.vars.clear();
                            return false;
                        }
                    }
                }
                self.vars.push((name.clone(), Ret(F64(x.abs()))));
                true
            }
            (Sym(Singleton(name)), List(x)) if x.len() == 1 => {
                self.vars.push((name.clone(), x[0].clone()));
                true
            }
            (Sym(ListVar(name)), List(_)) => {
                self.vars.push((name.clone(), value.clone()));
                true
            }
            (Sym(HeadTailTup(head, tail)), Tup(list)) |
            (Sym(HeadTailList(head, tail)), List(list)) => {
                if list.len() < 2 {return false};

                let r = self.bind(head, &list[0]);
                let b: Expr = if let (Sym(HeadTailTup(_, _)), Tup(_)) = (name, value) {
                    if list[1..].len() == 1 {
                        list[1].clone()
                    } else {
                        Tup(list[1..].into())
                    }
                } else {
                    List(list[1..].into())
                };

                if r {
                    if let Sym(Var(tail)) = &**tail {
                        for i in (0..self.vars.len()).rev() {
                            if &self.vars[i].0 == tail {
                                if &self.vars[i].1 == &b {
                                    break
                                } else {
                                    self.vars.clear();
                                    return false;
                                }
                            }
                        }
                        self.vars.push((tail.clone(), b));
                        true
                    } else {
                        self.vars.clear();
                        false
                    }
                } else {
                    self.vars.clear();
                    false
                }
            }
            (Sym(Any), _) => true,
            (Sym(a), Sym(b)) if a == b => true,
            (Ret(a), Ret(b)) if a == b => true,
            (Op(op1, a1, b1), Op(op2, a2, b2)) if op1 == op2 => {
                let r = self.bind(a1, a2) && self.bind(b1, b2);
                if !r {self.vars.clear()};
                r
            }
            (Tup(a), Tup(b)) if a.len() == b.len() => {
                let mut all = true;
                for i in 0..a.len() {
                    let r = self.bind(&a[i], &b[i]);
                    if !r {
                        all = false;
                        break;
                    }
                }
                if !all {self.vars.clear()};
                all
            }
            (List(a), List(b)) if a.len() == b.len() => {
                let mut all = true;
                for i in 0..a.len() {
                    let r = self.bind(&a[i], &b[i]);
                    if !r {
                        all = false;
                        break;
                    }
                }
                if !all {self.vars.clear()};
                all
            }
            _ => {
                self.vars.clear();
                false
            }
        }
    }

    /// Substitute free occurences of variables in context.
    ///
    /// This is used on the right side in a reduction rule.
    pub fn substitute(&self, x: &Expr) -> Result<Expr, Error> {
        match x {
            // Don't synthesize `_`.
            Sym(Any) => Err(Error::InvalidComputation),
            Sym(RetNegVar(_)) => Err(Error::InvalidComputation),
            Sym(Var(name)) | Sym(ArityVar(name, _)) => {
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == name {
                        return Ok(self.vars[i].1.clone())
                    }
                }
                Err(Error::CouldNotFind(name.clone()))
            }
            Sym(UnopRetVar(a, f)) => {
                let mut av: Option<Expr> = None;
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == a {
                        av = Some(self.vars[i].1.clone());
                    }
                }
                match av {
                    Some(Ret(F64(a))) => {
                        Ok(match **f {
                            Even => Ret(Bool(a.round() % 2.0 == 0.0)),
                            Odd => Ret(Bool(a.round() % 2.0 == 1.0)),
                            Neg => Ret(F64(-a)),
                            Inc => Ret(F64(a + 1.0)),
                            Reci => if a == 0.0 {
                                return Err(Error::InvalidComputation)
                            } else {
                                Ret(F64(a.recip()))
                            },
                            Abs => Ret(F64(a.abs())),
                            Prob => Ret(Bool(a >= 0.0 && a <= 1.0)),
                            Probl => Ret(Bool(a >= 0.0 && a < 1.0)),
                            Probr => Ret(Bool(a > 0.0 && a <= 1.0)),
                            Probm => Ret(Bool(a > 0.0 && a < 1.0)),
                            Sqrt => Ret(F64(a.sqrt())),
                            Ln => Ret(F64(a.ln())),
                            Log2 => Ret(F64(a.log2())),
                            Log10 => Ret(F64(a.log10())),
                            Exp => Ret(F64(a.exp())),
                            Sin => Ret(F64(a.sin())),
                            Asin => Ret(F64(a.asin())),
                            Cos => Ret(F64(a.cos())),
                            Acos => Ret(F64(a.acos())),
                            Tan => Ret(F64(a.tan())),
                            Atan => Ret(F64(a.atan())),
                            TypeOf => Sym(F64Type),
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    Some(List(a)) => {
                        Ok(match **f {
                            Len => Ret(F64(a.len() as f64)),
                            Dim => matrix::dim(&a)?,
                            Transpose => matrix::transpose(&a)?,
                            IsSquareMat => matrix::is_square_mat(&a)?,
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    Some(a) => {
                        Ok(match **f {
                            Arity => {
                                if let Some(n) = a.arity() {Ret(F64(n as f64))}
                                else {return Err(Error::InvalidComputation)}
                            }
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    _ => Err(Error::CouldNotFind(a.clone())),
                }
            }
            Sym(BinopRetVar(a, b, f)) => {
                let mut av: Option<Expr> = None;
                let mut bv: Option<Expr> = None;
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == a {
                        av = Some(self.vars[i].1.clone());
                    }
                    if &self.vars[i].0 == b {
                        bv = Some(self.vars[i].1.clone());
                    }
                }
                match (av, bv) {
                    (Some(Ret(a)), Some(Ret(b))) if **f == Eq => Ok(Ret(Bool(a == b))),
                    (Some(Ret(F64(a))), Some(Ret(F64(b)))) => {
                        Ok(Ret(F64(match **f {
                            Lt => return Ok(Ret(Bool(a < b))),
                            Le => return Ok(Ret(Bool(a <= b))),
                            Gt => return Ok(Ret(Bool(a > b))),
                            Ge => return Ok(Ret(Bool(a >= b))),
                            Add => a + b,
                            Sub => a - b,
                            Mul => a * b,
                            Pow => a.powf(b),
                            Rem => if b == 0.0 {
                                return Err(Error::InvalidComputation)
                            } else {
                                a % b
                            }
                            Div => if b == 0.0 {
                                return Err(Error::InvalidComputation)
                            } else {
                                a / b
                            }
                            Max2 => if a >= b {a} else {b},
                            Min2 => if a <= b {a} else {b},
                            Base if b >= 0.0 && b < a => {
                                let mut r = vec![Ret(F64(0.0)); a as usize];
                                r[b as usize] = Ret(F64(1.0));
                                return Ok(List(r))
                            }
                            Atan2 => return Ok(Ret(F64(a.atan2(b)))),
                            _ => return Err(Error::InvalidComputation),
                        })))
                    }
                    (Some(Ret(F64(a))), Some(List(b))) => {
                        Ok(match **f {
                            Item if a >= 0.0 && a < b.len() as f64 =>
                                b[a as usize].clone(),
                            Col if a >= 0.0 => matrix::col(a, &b)?,
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    (Some(List(a)), Some(List(b))) => {
                        Ok(match **f {
                            Concat => {
                                let mut a = a.clone();
                                a.extend(b.iter().map(|n| n.clone()));
                                List(a)
                            }
                            MulMat => matrix::mul_mat(&a, &b)?,
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    (Some(List(a)), Some(b)) => {
                        Ok(match **f {
                            Push => {
                                let mut a = a.clone();
                                a.push(b);
                                List(a)
                            }
                            PushFront => {
                                let mut a = a.clone();
                                a.insert(0, b);
                                List(a)
                            }
                            _ => return Err(Error::InvalidComputation),
                        })
                    }
                    (av, _) => {
                        if av.is_none() {
                            Err(Error::CouldNotFind(a.clone()))
                        } else {
                            Err(Error::CouldNotFind(b.clone()))
                        }
                    }
                }
            }
            Sym(TernopRetVar(a, b, c, f)) => {
                let mut av: Option<Expr> = None;
                let mut bv: Option<Expr> = None;
                let mut cv: Option<Expr> = None;
                for i in (0..self.vars.len()).rev() {
                    if &self.vars[i].0 == a {
                        av = Some(self.vars[i].1.clone());
                    }
                    if &self.vars[i].0 == b {
                        bv = Some(self.vars[i].1.clone());
                    }
                    if &self.vars[i].0 == c {
                        cv = Some(self.vars[i].1.clone());
                    }
                }
                match (av, bv, cv) {
                    (Some(Ret(F64(a))), Some(Ret(F64(b))), Some(Ret(F64(c)))) => {
                        Ok(match **f {
                            Range => if c >= a && c <= b {Ret(Bool(true))}
                                     else {Ret(Bool(false))},
                            Rangel => if c >= a && c < b {Ret(Bool(true))}
                                      else {Ret(Bool(false))},
                            Ranger => if c > a && c <= b {Ret(Bool(true))}
                                      else {Ret(Bool(false))},
                            Rangem => if c > a && c < b {Ret(Bool(true))}
                                      else {Ret(Bool(false))},
                            _ => return Err(Error::InvalidComputation)
                        })
                    }
                    (av, bv, _) => {
                        if av.is_none() {
                            Err(Error::CouldNotFind(a.clone()))
                        } else if bv.is_none() {
                            Err(Error::CouldNotFind(b.clone()))
                        } else {
                            Err(Error::CouldNotFind(c.clone()))
                        }
                    }
                }
            }
            Sym(_) | Ret(_) => Ok(x.clone()),
            Op(op, a, b) => {
                Ok(Op(*op, Box::new(self.substitute(a)?), Box::new(self.substitute(b)?)))
            }
            Tup(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(self.substitute(&a[i])?);
                }
                Ok(Tup(res))
            }
            List(a) => {
                let mut res = vec![];
                for i in 0..a.len() {
                    res.push(self.substitute(&a[i])?);
                }
                Ok(List(res))
            }
        }
    }
}

/// Represents an error.
#[derive(Debug, PartialEq)]
pub enum Error {
    /// Invalid function for computing something from left side of expression to right side.
    InvalidComputation,
    /// There was no defintion of the symbol.
    NoDefinition,
    /// There was no matching reduction rule.
    NoReductionRule,
    /// Could not find variable.
    CouldNotFind(Arc<String>),
}

impl Into<Expr> for Symbol {
    fn into(self) -> Expr {Sym(self)}
}

impl Into<Expr> for &'static str {
    fn into(self) -> Expr {Sym(Var(Arc::new(self.into())))}
}

impl Into<Symbol> for &'static str {
    fn into(self) -> Symbol {Var(Arc::new(self.into()))}
}

/// A function applied to one argument.
pub fn app<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Apply, Box::new(a.into()), Box::new(b.into()))
}

/// A function applied to two arguments.
pub fn app2<A: Into<Expr>, B: Into<Expr>, C: Into<Expr>>(a: A, b: B, c: C) -> Expr {
    app(app(a, b), c)
}

/// A function applied to three arguments.
pub fn app3<A: Into<Expr>, B: Into<Expr>, C: Into<Expr>, D: Into<Expr>>(
    a: A, b: B, c: C, d: D
) -> Expr {
    app2(app(a, b), c, d)
}

/// A function composition.
pub fn comp<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Compose, Box::new(a.into()), Box::new(b.into()))
}

/// A normal path expression.
pub fn path<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Path, Box::new(a.into()), Box::new(b.into()))
}

/// A function domain constraint.
pub fn constr<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Constrain, Box::new(a.into()), Box::new(b.into()))
}

/// A function domain constraint with two arguments.
pub fn constr2<A: Into<Expr>, B: Into<Expr>, C: Into<Expr>>(a: A, b: B, c: C) -> Expr {
    constr(constr(a, b), c)
}

/// A type judgement.
pub fn typ<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    Op(Type, Box::new(a.into()), Box::new(b.into()))
}

/// An `if` expression.
pub fn _if<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {app(app(If, a), b)}

/// A head-tail pattern match on a tuple.
pub fn head_tail_tup<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    HeadTailTup(Box::new(a.into()), Box::new(b.into())).into()
}

/// A head-tail pattern match on a list.
pub fn head_tail_list<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {
    HeadTailList(Box::new(a.into()), Box::new(b.into())).into()
}

/// A function variable with arity (number of arguments).
pub fn arity_var<A: Into<String>>(a: A, n: usize) -> Expr {Sym(ArityVar(Arc::new(a.into()), n))}

/// A list variable.
pub fn list_var<A: Into<String>>(a: A) -> Expr {Sym(ListVar(Arc::new(a.into())))}

/// A list variable of length 1.
pub fn singleton<A: Into<String>>(a: A) -> Expr {Sym(Singleton(Arc::new(a.into())))}

/// A value variable.
pub fn ret_var<A: Into<String>>(a: A) -> Expr {Sym(RetVar(Arc::new(a.into())))}

/// A value variable that is an integer.
pub fn ret_int_var<A: Into<String>>(a: A) -> Expr {Sym(RetIntVar(Arc::new(a.into())))}

/// A value variable that is positive or zero.
pub fn ret_pos_var<A: Into<String>>(a: A) -> Expr {Sym(RetPosVar(Arc::new(a.into())))}

/// A value variable that is strictly positive (non-zero).
pub fn ret_strict_pos_var<A: Into<String>>(a: A) -> Expr {Sym(RetStrictPosVar(Arc::new(a.into())))}

/// A value variable that is negative and non-zero.
///
/// Binds to its positive value.
pub fn ret_neg_var<A: Into<String>>(a: A) -> Expr {Sym(RetNegVar(Arc::new(a.into())))}

/// A variable that is not a value variable.
pub fn not_ret_var<A: Into<String>>(a: A) -> Expr {Sym(NotRetVar(Arc::new(a.into())))}

/// A variable of the type value `a : \`.
pub fn ret_type_var<A: Into<String>>(a: A) -> Expr {
    Op(Type, Box::new(Sym(Var(Arc::new(a.into())))), Box::new(Sym(RetType)))
}

/// Compute a binary function.
pub fn binop_ret_var<A: Into<String>, B: Into<String>, F: Into<Symbol>>(a: A, b: B, f: F) -> Expr {
    Sym(BinopRetVar(Arc::new(a.into()), Arc::new(b.into()), Box::new(f.into())))
}

/// Compute a ternary function.
pub fn ternop_ret_var<A: Into<String>, B: Into<String>, C: Into<String>, F: Into<Symbol>>(
    a: A, b: B, c: C, f: F
) -> Expr {
    Sym(TernopRetVar(Arc::new(a.into()), Arc::new(b.into()), Arc::new(c.into()), Box::new(f.into())))
}

/// Compute a unary function.
pub fn unop_ret_var<A: Into<String>, F: Into<Symbol>>(a: A, f: F) -> Expr {
    Sym(UnopRetVar(Arc::new(a.into()), Box::new(f.into())))
}

/// A function without domain constraints.
pub fn no_constr<A: Into<String>>(a: A) -> Expr {
    Sym(NoConstrVar(Arc::new(a.into())))
}

/// A 2D vector.
pub fn vec2<A: Into<Expr>, B: Into<Expr>>(a: A, b: B) -> Expr {List(vec![a.into(), b.into()])}

/// A 4D vector.
pub fn vec4<X: Into<Expr>, Y: Into<Expr>, Z: Into<Expr>, W: Into<Expr>>(
    x: X, y: Y, z: Z, w: W
) -> Expr {
    List(vec![x.into(), y.into(), z.into(), w.into()])
}

/// A quaternion.
pub fn quat<X: Into<Expr>, Y: Into<Expr>, Z: Into<Expr>, W: Into<Expr>>(
    x: X, y: Y, z: Z, w: W
) -> Expr {
    typ(List(vec![x.into(), y.into(), z.into(), w.into()]), QuatType)
}

/// Knowledge about a component-wise operation on vectors.
pub fn vec_op<S: Into<Symbol>>(s: S) -> Knowledge {
    let s = s.into();
    Red(app(constr(app(constr(s.clone(), app(Rty, VecType)), "x"), app(Rty, VecType)), "y"),
        app2(app(VecOp, s), "x", "y"))
}

/// Knowledge about a concrete binary operation `f(x : \, y : \) => f(x)(y) : \`.
pub fn concrete_op<S: Into<Symbol>>(s: S) -> Knowledge {
    let s = s.into();
    Red(app2(s.clone(), ret_type_var("x"), ret_type_var("y")), typ(app2(s, "x", "y"), RetType))
}

/// Knowledge about a commuative binary operator.
pub fn commutative<S: Into<Symbol>>(s: S) -> Knowledge {
    let s = s.into();
    let a: Expr = "a".into();
    let b: Expr = "b".into();
    Eqv(app(app(s.clone(), a.clone()), b.clone()), app(app(s, b), a))
}

/// Knowledge about an associative binary operator.
pub fn associative<S: Into<Symbol>>(s: S) -> Knowledge {
    let s = s.into();
    let a: Expr = "a".into();
    let b: Expr = "b".into();
    let c: Expr = "c".into();
    Eqv(app(app(s.clone(), a.clone()), app(app(s.clone(), b.clone()), c.clone())),
        app(app(s.clone(), app(app(s, a), b)), c))
}

/// Knowledge about a distributive relationship.
pub fn distributive<M: Into<Symbol>, A: Into<Symbol>>(mul: M, add: A) -> Knowledge {
    let mul = mul.into();
    let add = add.into();
    let a: Expr = "a".into();
    let b: Expr = "b".into();
    let c: Expr = "c".into();
    Eqv(app(app(mul.clone(), a.clone()), app(app(add.clone(), b.clone()), c.clone())),
        app(app(add, app(app(mul.clone(), a.clone()), b)), app(app(mul, a), c)))
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn apply_not() {
        let ref std = std();
        let a = app(Not, true);
        let a = a.inline(&Not, std).unwrap();
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, false.into());

        let a = app(Not, false);
        let a = a.inline(&Not, std).unwrap();
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, true.into());
    }

    #[test]
    fn comp_not_not() {
        let ref std = std();
        let a = comp(Not, Not);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Idb.into());
    }

    #[test]
    fn path_not_not() {
        let ref std = std();
        let a = path(Not, Not);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());
    }

    #[test]
    fn comp_id() {
        let ref std = std();

        let a = comp(Not, Id);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());

        let a = comp(Id, Not);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());
    }

    #[test]
    fn path_not_id() {
        let ref std = std();
        let a = path(Not, Id);
        let a = a.reduce(std).unwrap().0;
        assert_eq!(a, Not.into());
    }

    #[test]
    fn constraints() {
        let f: Expr = "f".into();
        assert_eq!(f.has_constraint(0), false);
        let f: Expr = app(Not, false);
        assert_eq!(f.has_constraint(0), false);
        let f: Expr = constr(Not, true);
        assert_eq!(f.has_constraint(0), true);
        let f: Expr = And.into();
        assert_eq!(f.has_constraint(0), false);
        let f: Expr = constr(And, Eqb);
        assert_eq!(f.has_constraint(0), true);
        let f: Expr = constr(And, Not);
        assert_eq!(f.has_constraint(0), true);
        let f: Expr = app(constr(And, Not), "x");
        assert_eq!(f.has_constraint(0), false);
        let f: Expr = app(constr(And, Eqb), "x");
        assert_eq!(f.has_constraint(0), true);
        let f: Expr = app(And, false);
        assert_eq!(f.has_constraint(0), false);
        // `sum{(: vec)}`
        let f: Expr = constr(Sum, app(Rty, VecType));
        assert_eq!(f.has_constraint(0), true);
        // `add{(>= 0)}`
        let f: Expr = constr(Add, app(Rge, 0.0));
        assert_eq!(f.has_constraint(0), true);
        let f: Expr = comp(Not, Not);
        assert_eq!(f.has_constraint(0), false);
        // `(not . not){not}`
        let f: Expr = constr(comp(Not, Not), true);
        assert_eq!(f.has_constraint(0), true);
        // `not{not} . not`
        let f: Expr = comp(constr(Not, Not), Not);
        assert_eq!(f.has_constraint(0), true);
        // `not . not{not}`
        let f: Expr = comp(Not, constr(Not, Not));
        assert_eq!(f.has_constraint(0), true);
        let f: Expr = true.into();
        assert_eq!(f.has_constraint(0), false);
    }

    #[test]
    fn eval_var() {
        let def = &[Def("x".into(), 0.0.into())];
        let f: Expr = "x".into();
        assert_eq!(f.eval(def).unwrap(), Ret(F64(0.0)));

        let mut def = std();
        def.push(Def("x".into(), 2.0.into()));
        let f: Expr = app2(Add, 1.0, "x");
        assert_eq!(f.eval(&def).unwrap(), Ret(F64(3.0)));

        let mut def = std();
        def.push(Def("x".into(), 0.0.into()));
        let f: Expr = app(Sin, "x");
        assert_eq!(f.eval(&def).unwrap(), Ret(F64(0.0)));
    }
}