1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//! Additional methods for Read and Write
//!
//! The additional methods implemented allow reading and writing integers and floats
//! in the specified endianness.
//!
//! # Usage
//!
//! Basically, you need to `use` the trait WritePodExt or ReadPodExt.
//!
//! # Examples
//!
//! ## Reading
//!
//! To read some value from a reader, import ReadPodExt and the needed endianness.
//!
//! ```
//! use podio::{ReadPodExt, BigEndian};
//!
//! let slice: &[u8] = &[0x10, 0x20, 0x30, 0x40];
//! let mut reader = std::io::Cursor::new(slice);
//!
//! let value = reader.read_u32::<BigEndian>().unwrap();
//!
//! assert_eq!(value, 0x10203040);
//! ```
//!
//! ## Writing
//!
//! For writing, you need to import the trait WritePodExt.
//!
//! ```
//! use podio::{WritePodExt, LittleEndian};
//!
//! let slice: &mut [u8] = &mut [0; 2];
//! let mut writer = std::io::Cursor::new(slice);
//!
//! writer.write_u16::<LittleEndian>(0x8802).unwrap();
//!
//! assert_eq!(writer.into_inner(), &[0x02, 0x88]);
//! ```
//!
//! ## Read exact
//!
//! One additional method, not really dealing with POD, is `read_exact`.
//!
//! ```
//! use podio::ReadPodExt;
//!
//! let slice: &[u8] = &[0, 1, 2, 3];
//! let mut reader = std::io::Cursor::new(slice);
//!
//! assert_eq!(reader.read_exact(1).unwrap(), [0]);
//! assert_eq!(reader.read_exact(2).unwrap(), [1,2]);
//! assert_eq!(reader.read_exact(0).unwrap(), []);
//! assert_eq!(reader.read_exact(1).unwrap(), [3]);
//! assert!(reader.read_exact(1).is_err());

#![warn(missing_docs)]

use std::io;
use std::io::prelude::*;

/// Little endian. The number `0xABCD` is stored `[0xCD, 0xAB]`
pub enum LittleEndian {}
/// Big endian. The number `0xABCD` is stored `[0xAB, 0xCD]`
pub enum BigEndian {}

/// Trait to determine the conversion methods for a specific endianness
pub trait Endianness {
    /// Converts a value between little-endian and the specified endianness
    fn is_little_endian() -> bool;
}

/// Additional write methods for a io::Write
pub trait WritePodExt {
    /// Write a u64
    fn write_u64<T: Endianness>(&mut self, u64) -> io::Result<()>;
    /// Write a u32
    fn write_u32<T: Endianness>(&mut self, u32) -> io::Result<()>;
    /// Write a u16
    fn write_u16<T: Endianness>(&mut self, u16) -> io::Result<()>;
    /// Write a u8
    fn write_u8(&mut self, u8) -> io::Result<()>;
    /// Write a i64
    fn write_i64<T: Endianness>(&mut self, i64) -> io::Result<()>;
    /// Write a i32
    fn write_i32<T: Endianness>(&mut self, i32) -> io::Result<()>;
    /// Write a i16
    fn write_i16<T: Endianness>(&mut self, i16) -> io::Result<()>;
    /// Write a i8
    fn write_i8(&mut self, i8) -> io::Result<()>;
    /// Write a f32
    fn write_f32<T: Endianness>(&mut self, f32) -> io::Result<()>;
    /// Write a f64
    fn write_f64<T: Endianness>(&mut self, f64) -> io::Result<()>;
}

/// Additional read methods for a io::Read
pub trait ReadPodExt {
    /// Read a u64
    fn read_u64<T: Endianness>(&mut self) -> io::Result<u64>;
    /// Read a u32
    fn read_u32<T: Endianness>(&mut self) -> io::Result<u32>;
    /// Read a u16
    fn read_u16<T: Endianness>(&mut self) -> io::Result<u16>;
    /// Read a u8
    fn read_u8(&mut self) -> io::Result<u8>;
    /// Read a i64
    fn read_i64<T: Endianness>(&mut self) -> io::Result<i64>;
    /// Read a i32
    fn read_i32<T: Endianness>(&mut self) -> io::Result<i32>;
    /// Read a i16
    fn read_i16<T: Endianness>(&mut self) -> io::Result<i16>;
    /// Read a i8
    fn read_i8(&mut self) -> io::Result<i8>;
    /// Read a f32
    fn read_f32<T: Endianness>(&mut self) -> io::Result<f32>;
    /// Read a f64
    fn read_f64<T: Endianness>(&mut self) -> io::Result<f64>;
    /// Read a specific number of bytes
    fn read_exact(&mut self, usize) -> io::Result<Vec<u8>>;
}

impl Endianness for LittleEndian {
    fn is_little_endian() -> bool {
        true
    }
}

impl Endianness for BigEndian {
    fn is_little_endian() -> bool {
        false
    }
}

impl<W: Write> WritePodExt for W {
    fn write_u64<T: Endianness>(&mut self, val: u64) -> io::Result<()> {
        let buf = match <T as Endianness>::is_little_endian() {
            true => u64::to_le_bytes(val),
            false => u64::to_be_bytes(val),
        };
        self.write_all(&buf)
    }

    fn write_u32<T: Endianness>(&mut self, val: u32) -> io::Result<()> {
        let buf = match <T as Endianness>::is_little_endian() {
            true => u32::to_le_bytes(val),
            false => u32::to_be_bytes(val),
        };
        self.write_all(&buf)
    }

    fn write_u16<T: Endianness>(&mut self, val: u16) -> io::Result<()> {
        let buf = match <T as Endianness>::is_little_endian() {
            true => u16::to_le_bytes(val),
            false => u16::to_be_bytes(val),
        };
        self.write_all(&buf)
    }

    fn write_u8(&mut self, val: u8) -> io::Result<()> {
        self.write_all(&[val])
    }

    fn write_i64<T: Endianness>(&mut self, val: i64) -> io::Result<()> {
        self.write_u64::<T>(val as u64)
    }

    fn write_i32<T: Endianness>(&mut self, val: i32) -> io::Result<()> {
        self.write_u32::<T>(val as u32)
    }

    fn write_i16<T: Endianness>(&mut self, val: i16) -> io::Result<()> {
        self.write_u16::<T>(val as u16)
    }

    fn write_i8(&mut self, val: i8) -> io::Result<()> {
        self.write_u8(val as u8)
    }

    fn write_f32<T: Endianness>(&mut self, val: f32) -> io::Result<()> {
        let tval: u32 = val.to_bits();
        self.write_u32::<T>(tval)
    }

    fn write_f64<T: Endianness>(&mut self, val: f64) -> io::Result<()> {
        let tval: u64 = val.to_bits();
        self.write_u64::<T>(tval)
    }
}

#[inline]
fn fill_buf<R: Read>(reader: &mut R, buf: &mut [u8]) -> io::Result<()> {
    let mut idx = 0;
    while idx != buf.len() {
        match reader.read(&mut buf[idx..]) {
            Ok(0) => return Err(io::Error::new(io::ErrorKind::Other, "Could not read enough bytes")),
            Ok(v) => { idx += v; }
            Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
            Err(e) => return Err(e),
        }
    }
    Ok(())
}

impl<R: Read> ReadPodExt for R {
    fn read_u64<T: Endianness>(&mut self) -> io::Result<u64> {
        let mut buf = [0u8; 8];
        fill_buf(self, &mut buf)?;
        let val = match <T as Endianness>::is_little_endian() {
            true => u64::from_le_bytes(buf),
            false => u64::from_be_bytes(buf),
        };
        Ok(val)
    }

    fn read_u32<T: Endianness>(&mut self) -> io::Result<u32> {
        let mut buf = [0u8; 4];
        fill_buf(self, &mut buf)?;
        let val = match <T as Endianness>::is_little_endian() {
            true => u32::from_le_bytes(buf),
            false => u32::from_be_bytes(buf),
        };
        Ok(val)
    }

    fn read_u16<T: Endianness>(&mut self) -> io::Result<u16> {
        let mut buf = [0u8; 2];
        fill_buf(self, &mut buf)?;
        let val = match <T as Endianness>::is_little_endian() {
            true => u16::from_le_bytes(buf),
            false => u16::from_be_bytes(buf),
        };
        Ok(val)
    }

    fn read_u8(&mut self) -> io::Result<u8> {
        let buf = &mut [0u8; 1];
        fill_buf(self, buf)?;
        Ok(buf[0])
    }

    fn read_i64<T: Endianness>(&mut self) -> io::Result<i64> {
        self.read_u64::<T>().map(|v| v as i64)
    }

    fn read_i32<T: Endianness>(&mut self) -> io::Result<i32> {
        self.read_u32::<T>().map(|v| v as i32)
    }

    fn read_i16<T: Endianness>(&mut self) -> io::Result<i16> {
        self.read_u16::<T>().map(|v| v as i16)
    }

    fn read_i8(&mut self) -> io::Result<i8> {
        self.read_u8().map(|v| v as i8)
    }

    fn read_f64<T: Endianness>(&mut self) -> io::Result<f64> {
        self.read_u64::<T>().map(|v| f64::from_bits(v))
    }

    fn read_f32<T: Endianness>(&mut self) -> io::Result<f32> {
        self.read_u32::<T>().map(|v| f32::from_bits(v))
    }

    fn read_exact(&mut self, len: usize) -> io::Result<Vec<u8>> {
        let mut res = vec![0; len];
        fill_buf(self, &mut res)?;
        Ok(res)
    }
}